Skip to main content
Log in

Investigation into Atomic Diffusion at the Interface During Extrusion Welding of Magnesium and Magnesium Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This research was aimed to reveal atomic diffusion across the bonding interface through the extrusion-welding experiments of dissimilar materials, namely pure magnesium and Mg–Al–Zn–RE alloy. A special tooling setup used to simulate weld seam formation during extrusion through a porthole die was designed for this model study. To deform the metal streams symmetrically and create a sound weld seam, the extrusion-welding experiments from sandwich-structured billets were carried out. Chemical analysis of diffused atoms in the welding region was performed by electron probe micro-analysis. The results confirmed that atomic diffusion indeed occurred across the interface during extrusion. The gradients in element concentration, local stresses, and hydrostatic pressure were considered to be the necessary conditions for extensive atomic diffusion to occur. Atomic diffusion was significantly enhanced by raising extrusion temperature. The analysis of the stress and hydrostatic pressure distributions in the welding region provided new insights into the mechanisms of weld seam formation during the extrusion of light metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Guo, B. Feng, S. Fu, Y. Xin, S. Xu and Q. Liu: J. Magnes. Alloy., 2017, vol. 5, pp. 13-19. 10.1016/j.jma.2016.12.001.

    Article  CAS  Google Scholar 

  2. Y.D. Sun, Q.R. Chen and W.J. Sun: Int. J. of Adv. Manuf. Technol., 2015, vol. 80, pp. 495-506. 10.1007/s00170-015-7030-5.

    Article  Google Scholar 

  3. Z. Liu, L. Li, J. Yi, S. Li and G. Wang: Int. J. of Adv. Manuf. Technol., 2017, vol. 92, pp. 1039-52. 10.1007/s00170-017-0200-x.

    Article  Google Scholar 

  4. D.R. Cooper and J.M. Allwood: J. Mater. Process. Technol., 2014, vol. 214, pp. 2576-92. 10.1016/j.jmatprotec.2014.04.018.

    Article  CAS  Google Scholar 

  5. N.F. Kazakov: Diffusion Bonding of Materials, Pergamon Press, Oxford, 1985.

    Google Scholar 

  6. F. Wu, W. Zhou, Y. Han, X. Fu, Y. Xu, and H. Hou: Materials (Basel), 2018, vol. 11, 1446. https://doi.org/10.3390/ma11081446.

    Article  CAS  Google Scholar 

  7. S. Shimizu, H.T. Fujii, Y.S. Sato, H. Kokawa, M.R. Sriraman and S.S. Babu: Acta Mater., 2014, vol. 74, pp. 234-43. 10.1016/j.actamat.2014.04.043.

    Article  CAS  Google Scholar 

  8. K.-i. Mori, N. Bay, L. Fratini, F. Micari and A.E. Tekkaya: CIRP Annals, 2013, vol. 62, pp. 673-94. 10.1016/j.cirp.2013.05.004.

    Article  Google Scholar 

  9. B. Xie, M. Sun, B. Xu, C. Wang, D. Li and Y. Li: Mater. Des., 2018, vol. 157, pp. 437-46. 10.1016/j.matdes.2018.08.003.

    Article  CAS  Google Scholar 

  10. J. Yu and G. Zhao: Mater. Charact., 2018, vol. 138, pp. 56-66. 10.1016/j.matchar.2018.01.052.

    Article  CAS  Google Scholar 

  11. H.Y. Chen, J. Cao, X.G. Song and J.C. Feng: Appl. Phys. Lett., 2012, vol. 100, 211602. https://doi.org/10.1063/1.4721665.

    Article  CAS  Google Scholar 

  12. A. Hill and E.R. Wallach: Acta Metall., 1989, vol. 37, pp. 2425-37. 10.1016/0001-6160(89)90040-0.

    Article  CAS  Google Scholar 

  13. S.-W. Bai, G. Fang and J. Zhou: J. Mater. Process. Technol., 2017, vol. 250, pp. 109-20. 10.1016/j.jmatprotec.2017.07.012.

    Article  CAS  Google Scholar 

  14. W. Liu, L. Long, Y. Ma and L. Wu: J. Alloy. Compd., 2015, vol. 643, pp. 34-9. 10.1016/j.jallcom.2015.04.116.

    Article  CAS  Google Scholar 

  15. Z. Zhu, R. Shi, A.D. Klarner, A.A. Luo and Y. Chen: J. Magnes. Alloy., 2020, vol. 8, pp. 578-86. 10.1016/j.jma.2020.03.004.

    Article  CAS  Google Scholar 

  16. Y. Chen, S. Liu, Y. Zhao, Q. Liu, L. Zhu, X. Song, Y. Zhang and J. Hao: Vacuum, 2017, vol. 143, pp. 150-7. 10.1016/j.vacuum.2017.06.004.

    Article  CAS  Google Scholar 

  17. C.Y. Sun, L. Li, M.W. Fu and Q.J. Zhou: Mater. Des., 2016, vol. 94, pp. 433-43. 10.1016/j.matdes.2016.01.058.

    Article  Google Scholar 

  18. J. Tang, L. Chen, G. Zhao, C. Zhang and L. Sun: J. Magnes. Alloy., 2020, vol. 8, pp. 654-66. 10.1016/j.jma.2020.02.016.

    Article  CAS  Google Scholar 

  19. C. Zhang, M.Q. Li and H. Li: J. Mater. Sci. Technol., 2018, vol. 34, pp. 1449-54. 10.1016/j.jmst.2017.12.001.

    Article  Google Scholar 

  20. J. Yu, G. Zhao and L. Chen: J. Mater. Process. Technol., 2016, vol. 237, pp. 31-47. 10.1016/j.jmatprotec.2016.05.024.

    Article  CAS  Google Scholar 

  21. S.-W. Bai, G. Fang and J. Zhou: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3246-64. 10.1007/s11661-019-05242-9.

    Article  CAS  Google Scholar 

  22. O. Sabokpa, A. Zarei-Hanzaki and H.R. Abedi: Mater. Sci. Eng. A, 2012, vol. 550, pp. 31-8. 10.1016/j.msea.2012.03.112.

    Article  CAS  Google Scholar 

  23. L. Li, H. Zhang, J. Zhou, J. Duszczyk, G.Y. Li and Z.H. Zhong: Mater. Des., 2008, vol. 29, pp. 1190-8. 10.1016/j.matdes.2007.05.003.

    Article  CAS  Google Scholar 

  24. H. Mirzadeh: Mater. Chem. Phys., 2015, vol. 152, pp.123-126. 10.1016/j.matchemphys.2014.12.023.

    Article  CAS  Google Scholar 

  25. H. Mehrer: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer, Berlin, 2007. 10.1007/978-3-540-71488-0.

    Article  Google Scholar 

  26. W. Zhong and J.-C. Zhao: Scripta Mater., 2017, vol. 127, pp. 92-6. 10.1016/j.scriptamat.2016.09.008.

    Article  CAS  Google Scholar 

  27. L. Li, J. Zhou and J. Duszczyk: J. Mater. Process. Technol., 2006, vol. 172, pp. 372-80. 10.1016/j.jmatprotec.2005.09.021.

    Article  CAS  Google Scholar 

  28. C.Y. Sun, Y.P. Cong, Q.D. Zhang, M.W. Fu and L. Li: J. Mater. Process. Technol., 2018, vol. 253, pp. 99-108. 10.1016/j.jmatprotec.2017.10.045.

    Article  CAS  Google Scholar 

  29. F. Dobeš and P. Dymáček: J. Magnes. Alloy., 2020, vol. 8, pp. 414-20. 10.1016/j.jma.2020.03.001.

    Article  CAS  Google Scholar 

  30. C.C. Kammerer, N.S. Kulkarni, R.J. Warmack and Y.H. Sohn: J. Alloy. Compd., 2014, vol. 617, pp. 968-74. 10.1016/j.jallcom.2014.07.193.

    Article  CAS  Google Scholar 

  31. Y. Wang, X. Li, D. Dou, L. Shen and J. Gong: Int. J. Hydrog. Energy., 2016, vol. 41, pp. 6053-63. 10.1016/j.ijhydene.2016.03.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the financial support of the National Natural Science Foundation of China (Project No. 51675300).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 25, 2021; accepted June 29, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Fang, G., Jiang, B. et al. Investigation into Atomic Diffusion at the Interface During Extrusion Welding of Magnesium and Magnesium Alloys. Metall Mater Trans A 52, 4222–4233 (2021). https://doi.org/10.1007/s11661-021-06381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06381-8

Navigation