Skip to main content
Log in

High-Throughput Determination of Composition-Dependent Interdiffusivity Matrices and Atomic Mobilities in fcc Cu-Ni-Al Alloys by Combining Diffusion Couple Experiments with HitDIC Modeling

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this paper, eight solid-state diffusion couples in fcc ternary Cu-Ni-Al alloys at 1073, 1173 and 1273 K were prepared, and the corresponding composition profiles were measured with an electron probe microanalyzer (EPMA) technique. Based on the measured composition profiles and HitDIC software, a set of reliable atomic mobility descriptions in the fcc Cu-Ni-Al system were directly established, from which the composition- and temperature-dependent interdiffusion coefficient matrices were evaluated. Then, the three-dimensional (3D) main interdiffusivity surfaces for fcc Cu-Ni-Al systems were constructed. The diffusion rate of Al is faster than that of Ni. Both the main interdiffusivities of Al and Ni increase with the increase of Al concentration but decrease with Ni concentration. The reliability of the evaluated interdiffusivities was first validated by reproducing the measured composition profiles and interdiffusion fluxes. After that, the interdiffusivities and corresponding uncertainties at intersection points of diffusion couples were evaluated by using the Matano–Kirkaldy method combined with distribution functions. Especially all the interdiffusion coefficients estimated from the present mobility parameters are within the bounds of the uncertainties, which further quantitatively verified the reliability of the present mobility descriptions. The accuracy of the as-determined mobility is further highlighted via combining with the reported thermodynamic descriptions, which enables an accurate prediction of the volume of Ni3Al precipitates in the Cu-Ni-Al alloy during artificial aging. The present work indicates that with the accurate thermodynamic as well as boundary mobility descriptions, reliable ternary mobility descriptions can be achieved by combining the diffusion couple experiments with the HitDIC modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Kear, B.D. Barker, K. Stokes, F.C. Walsh, J. Appl. Electrochem. 34, 659–669 (2004)

    Article  CAS  Google Scholar 

  2. J.L. Chen, Z. Li, A.Y. Zhu, L.Y. Luo, J. Liang, Mater. Des. 34, 618–623 (2012)

    Article  CAS  Google Scholar 

  3. K.A. Christofidou, K. JenniferRobinson, P.M. Mignanelli, E.J. Pickering, N.G. Jones, H.J. Stone, Mater. Sci. Eng. A 692, 192–198 (2017)

    Article  CAS  Google Scholar 

  4. B.W. Dong, J.C. Jie, S.H. Wang, Z.Z. Dong, T.M. Wang, T.J. Li, Intermetallics 120, 106749 (2020)

    Article  CAS  Google Scholar 

  5. J.P. Stobrawa, Z.M. Rdzawski, J. Achiev. Mater. Manuf. Eng. 15, 21–26 (2006)

    Google Scholar 

  6. L. Shen, Z. Li, Q. Dong, Z. Xiao, S. Li, Q. Lei, J. Mater. Res. 30, 736–744 (2015)

    Article  CAS  Google Scholar 

  7. Z. Li, X. Li, C. Wang, Y. Zheng, Q. Yu, X. Cheng, N. Li, L. Bi, Q. Wang, C. Dong, J. Alloys Compd. 805, 404–414 (2019)

    Article  CAS  Google Scholar 

  8. M. Montakhab, E. Balikci, Metall. Mater. Trans. A 50, 3330–3342 (2019)

    Article  CAS  Google Scholar 

  9. Z. Lu, L. Zhang, J. Wang, Q. Yao, G. Rao, H. Zhou, J. Alloys Compd. 805, 415–425 (2019)

    Article  CAS  Google Scholar 

  10. Y. Tang, Y. Li, W. Zhao, I. Roslyakova, L. Zhang, J. Magnes. Alloys, vol. 8, pp. 1238–52 (2020).

    Article  CAS  Google Scholar 

  11. W. Wang, H. Chen, H. Larsson, H. Mao, Calphad 65, 346–369 (2019)

    Article  CAS  Google Scholar 

  12. Y. Liu, W. Chen, Y. Tang, Y. Du, L. Zhang, Acta Metall. Sin. 52, 1009–1016 (2016)

    CAS  Google Scholar 

  13. Y. Liu, W. Chen, J. Zhong, M. Chen, L. Zhang, Metall. Mater. Eng. 23, 191–206 (2017)

    Article  Google Scholar 

  14. J.S. Kirkaldy, Can. J. Phys. 35, 435–440 (1957)

    Article  CAS  Google Scholar 

  15. J.S. Kirkaldy, J.E. Lane, G.R. Mason, Can. J. Phys. 41, 2174–2186 (1963)

    Article  CAS  Google Scholar 

  16. J.S. Kirkaldy, D. Weichert, Z.-U. Haqs, Can. J. Phys. 41, 2166–2173 (1963)

    Article  CAS  Google Scholar 

  17. R. Bouchet, R. Mevrel, Acta Mater. 50, 4887–4900 (2002)

    Article  CAS  Google Scholar 

  18. W. Kucza, Scripta Mater. 66, 151–154 (2012)

    Article  CAS  Google Scholar 

  19. Q. Zhang, J.-C. Zhao, Intermetallics 34, 132–141 (2013)

    Article  CAS  Google Scholar 

  20. W. Chen, L. Zhang, Y. Du, C. Tang, B. Huang, Scripta Mater. 90, 53–56 (2014)

    Article  CAS  Google Scholar 

  21. W. Chen, J. Zhong, L. Zhang, MRS Commun. 6, 295–300 (2016)

    Article  CAS  Google Scholar 

  22. J. Zhong, L. Chen, L. Zhang, J. Mater. Sci. 55, 10303–10338 (2020)

    Article  CAS  Google Scholar 

  23. J. Zhong, W. Chen, L. Zhang, Calphad 60, 177–190 (2018)

    Article  CAS  Google Scholar 

  24. H. Xu, K. Cheng, J. Zhong, X. Wu, M. Wei, L. Zhang, J. Alloys Compd. 798, 26–34 (2019)

    Article  CAS  Google Scholar 

  25. J. Chen, L. Zhang, X.-G. Lu, Intermetallics 102, 11–20 (2018)

    Article  CAS  Google Scholar 

  26. J. Chen, L. Zhang, X.-G. Lu, Metall. Mater. Trans. A. 49A, 2999–3010 (2018)

    Article  CAS  Google Scholar 

  27. R. Wang, W. Chen, J. Zhong, L. Zhang, J. Mater. Sci. Technol. 24, 1791–1798 (2018)

    Article  Google Scholar 

  28. Q. Li, W. Chen, J. Zhong, L. Zhang, Q. Chen, Z. Liu, Metals 8, 16 (2018)

    Article  CAS  Google Scholar 

  29. W. Chen, L. Zhang, J. Phase Equilib. Diffus. 1, 457–465 (2017)

    Article  CAS  Google Scholar 

  30. S. Chen, Q. Li, J. Zhong, F. Xing, L. Zhang, J. Alloys Compd. 791, 255–264 (2019)

    Article  CAS  Google Scholar 

  31. X. Wu, J. Zhong, L. Zhang, Acta Mater. 188, 665–676 (2020)

    Article  CAS  Google Scholar 

  32. M. Wei, L. Zhang, Sci. Rep. 8, 5071 (2018)

    Article  CAS  Google Scholar 

  33. M.A. Dayananda, Metall. Trans. A. 14A, 1851–1858 (1983)

    Article  CAS  Google Scholar 

  34. G. Ghosh, Acta Mater. 49, 2609–2624 (2001)

    Article  CAS  Google Scholar 

  35. W. Zhang, Y. Du, L. Zhang, H. Xu, S. Liu, L. Chen, Calphad 35, 367–375 (2011)

    Article  CAS  Google Scholar 

  36. D. Liu, L. Zhang, Y. Du, H. Xu, S. Liu, L. Liu, Calphad 33, 761–768 (2009)

    Article  CAS  Google Scholar 

  37. L. Zhang, Y. Du, Q. Chen, I. Steinbach, B. Huang, Int. J. Mater. Res. 101, 1461–1475 (2010)

    Article  CAS  Google Scholar 

  38. L. Onsager, Ann. N. Y. Acad. Sci. 46, 241–265 (1945)

    Article  CAS  Google Scholar 

  39. D. Liu, L. Zhang, Y. Du, H. Xu, Z. Jin, J. Alloys Compd. 566, 156–163 (2013)

    Article  CAS  Google Scholar 

  40. J. Kucera, B. Million, Metall. Trans. 1, 2599–2602 (1970)

    CAS  Google Scholar 

  41. K. Monma, H. Suto, H. Oikawa, J. Jpn. Inst. Met. 28, 192–196 (1964)

    Article  Google Scholar 

  42. K.J. Anusavice, R.T. DeHoff, Metall. Trans. 3, 1278–1289 (1972)

    Article  CAS  Google Scholar 

  43. V.T. Heumann, K.J. Grundhoff, Z. Metall. 63, 173 (1972)

    CAS  Google Scholar 

  44. J. Levasseur, J. Philibert, Phys. Status Solidi B 21, K1–K4 (1967)

    Article  CAS  Google Scholar 

  45. R. Damkohler, T. Heumann, Phys. Status Solidi A 73, 117–127 (1982)

    Article  Google Scholar 

  46. Y. Iijima, K. Hirano, M. Kikuchi, Trans. Jpn. Inst. Met. 23, 19–23 (1982)

    Article  CAS  Google Scholar 

  47. Q. Chen, J. Jeppsson, J. Ågren, Acta Mater. 56, 1890–1896 (2008)

    Article  CAS  Google Scholar 

  48. J. Colín, S. Sern, B. Campillo, R.A. Rodríguez, J. Juárez-Islas, J. Alloys Compd. 489, 26–29 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Hebei Provincial Science and Technology Program of China (grant no. E2019202234) and Research Foundation of the Education Department of Hebei Province (grant no. BJ2018026)-Outstanding Young Talents Plan is acknowledged. Y. Tang acknowledges the financial support from the Yuanguang Fellowship released by Hebei University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Tang or Lijun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 29, 2020; accepted February 24, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhang, E., Tang, Y. et al. High-Throughput Determination of Composition-Dependent Interdiffusivity Matrices and Atomic Mobilities in fcc Cu-Ni-Al Alloys by Combining Diffusion Couple Experiments with HitDIC Modeling. Metall Mater Trans A 52, 2331–2343 (2021). https://doi.org/10.1007/s11661-021-06224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06224-6

Navigation