Skip to main content
Log in

The Site Preferences of Transition Elements and Their Synergistic Effects on the Bonding Strengthening and Structural Stability of γ′-Ni3Al Precipitates in Ni-Based Superalloys: A First-Principles Investigation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Advanced mechanical properties of Ni-based superalloys strongly depend on the site preferences of alloying X elements in γ′-Ni3Al-X precipitates, which are associated with the partial bonding characteristics between Ni, Al, and X atoms. Therefore, in the current work, the site occupancy tendencies of transition X metals were revealed via first-principles ab initio calculations at 0 K. Bonding features of Ni-Al, Ni-X, and Al-X pairs were simulated by using the charge density difference (CDD), electron localization function (ELF), and density of states (DOS) methods, respectively. According to simulations, higher atomic size X elements preferably occupy Al sites of γ′-Ni3Al-X intermetallics and lead to strong covalent-like directional bondings between themselves and their nearest neighbor (NN) Ni atoms along 〈110〉 directions. However, if these larger X metals substituted for Ni sites, the bonding properties would differ by plane due to the nature of the L12-type crystal structure of γ′-Ni3Al-X precipitates. Considering all transition elements, refractory metals (i.e., X = Re, W, Mo, Ta, or Nb) appear as the most effective strength inducers, improving the structural stability of γ′ phase, even if Ni site substitution of X = Re atoms would start to increase structural instability. On the other hand, relatively small alloying X elements having electron configuration similarities with Ni (i.e., X = Co, Cu, Rh, Pd, Ag, Ir, Pt, or Au) are more likely to worsen bonding strengthening. Instead, these transition X metals creating metallic bondings with NN Ni atoms would contribute to ductility and malleability of Ni-based superalloys. Furthermore, depending on the relative atomic size of γ′-former and refractory elements, the phase and site preferences of refractory atoms would alter in multicomponent systems. As a result of the attractive or weak repulsive forces between Re-Re, Re-Mo, and Re-W pairs, the structural stability of the constituent phases would deteriorate and harmful topologically close-packed (TCP) phases would precipitate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 35–46.

    Book  Google Scholar 

  2. T.M. Pollock and S. Tin: J. Propul. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  3. H. Long, S. Mao, Y. Liu, Z. Zhang, and X. Han: J. Alloys Compd., 2018, vol. 743, pp. 203–20.

    Article  CAS  Google Scholar 

  4. K. Kawagishi, A.C. Yeh, and T. Yokokawa: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3206–16.

    Google Scholar 

  5. S.A. Hosseini, S.M. Abbasi, K.Z. Madar, and H.M.K. Yazdi: Mater. Chem. Phys., 2018, vol. 211, pp. 302–11.

    Article  CAS  Google Scholar 

  6. K. Guan, Z. Huang, R. Cui, and J. Qin: Mater. Sci. Eng. A, 2019, vol. 752, pp. 86–92.

    Article  CAS  Google Scholar 

  7. A.A. Oni, S.R. Broderick, K. Rajan, and J.M. LeBeau: Intermetallics, 2016, vol. 73, pp. 72–78.

    Article  CAS  Google Scholar 

  8. C. Booth-Morrison, Z. Mao, R.D. Noebe, and D.N. Seidman: Appl. Phys. Lett., 2008, vol. 93, p. 033103.

    Article  CAS  Google Scholar 

  9. S. Liu, M. Wen, Z. Li, W. Liu, P. Yan, and C. Wang: Mater. Des., 2017, vol. 130, pp. 157–65.

    Article  CAS  Google Scholar 

  10. Y. Zhou, Z. Mao, C. Booth-Morrison, and D.N. Seidman: Appl. Phys. Lett., 2008, vol. 93, p. 171905.

    Article  CAS  Google Scholar 

  11. J.S. Van Sluytman, C.J. Moceri, and T.M. Pollock: Mater. Sci. Eng. A, 2015, vol. 639, pp. 747–54.

    Article  CAS  Google Scholar 

  12. Y. Amouyal, Z. Mao, C. Booth-Morrison, and D.N. Seidman: Appl. Phys. Lett., 2009, vol. 94, p. 041917.

    Article  CAS  Google Scholar 

  13. X.X. Yu, C.Y. Wang, X.N. Zhang, P. Yan, and Z. Zhang: J. Alloys Compd., 2014, vol. 582, pp. 299–304.

    Article  CAS  Google Scholar 

  14. K.V. Vamsi, K.N. Goswami, K.S. Vinay, S.K. Verma, R. Balamuralikrishnan, N. Das, D. Banerjee, and S. Karthikeyan: MATEC Web Conf., 2014, vol. 14, p. 17007.

    Article  Google Scholar 

  15. Y. Tu, Z.G. Mao, and D.N. Seidman: Appl. Phys. Lett., 2012, vol. 101, p. 121910.

    Article  CAS  Google Scholar 

  16. Y.X. Wu, J. Guo, J.S. Hou, W.L. Zhang, R.Z. Huang, X.G. Liu, X.F. Ma, and Q.F. Zhang: Acta Metall. Sinica, 2014, vol. 27 (1), pp. 87–94.

    Article  CAS  Google Scholar 

  17. Y. Amouyal, Z.G. Mao, and D.N. Seidman: Appl. Phys. Lett., 2009, vol. 95, p. 161909.

    Article  CAS  Google Scholar 

  18. C. Jiang and B. Gleeson: Scripta Mater., 2006, vol. 55, pp. 433–36.

    Article  CAS  Google Scholar 

  19. Q. Wu and S. Li: Comput. Mater. Sci., 2012, vol. 53, pp. 436–43.

    Article  CAS  Google Scholar 

  20. M. Chaudhari, A. Singh, P. Gopal, S. Nag, G.B. Viswanathan, J. Tiley, R. Banerjee, and J. Du: Philos. Mag. Lett., 2012, vol. 92 (9), pp. 495–506.

    Article  CAS  Google Scholar 

  21. R. Eriş, A.O. Mekhrabov, and M.V. Akdeniz: Philos. Mag., 2017, vol. 97 (29), pp. 2615–31.

    Article  CAS  Google Scholar 

  22. W. Zhao, Z. Sun, and S. Gong: Intermetallics, 2015, vol. 65, pp. 75–80.

    Article  CAS  Google Scholar 

  23. Y. Amouyal, Z.G. Mao, and D.N. Seidman: Acta Mater., 2010, vol. 58, pp. 5898–5911.

    Article  CAS  Google Scholar 

  24. D. Blavette and A. Bostel: Acta Metall., 1984, vol. 32, pp. 811–16.

    Article  CAS  Google Scholar 

  25. M.K. Miller, R. Jayaram, L.S. Lin, and A.D. Cetel: Appl. Surf. Sci., 1994, vols. 76–77, pp. 172–76.

    Article  Google Scholar 

  26. K.L. More and M.K. Miller: J. Phys., 1988, vol. 49, pp. 391–96.

    Google Scholar 

  27. M.K. Miller and J.A. Horton: Scripta Metall., 1986, vol. 20, pp. 1125–30.

    Article  CAS  Google Scholar 

  28. S.H. Liu, C.P. Liu, W.Q. Liu, X.N. Zhang, P. Yan, and C.Y. Wang: Philos. Mag., 2016, vol. 96, pp. 2204–18.

    Article  CAS  Google Scholar 

  29. A.P. Ofori, C.J. Rossouw, and C.J. Humphreys: Acta Mater., 2005, vol. 53, pp. 97–110.

    Article  CAS  Google Scholar 

  30. S. Meher, T. Rojhirunsakool, P. Nandwana, J. Tiley, and R. Banerjee: Ultramicroscopy, 2015, vol. 159, pp. 272–77.

    Article  CAS  Google Scholar 

  31. R. Goodall: Data Brief, 2019, vol. 26, p. 104515.

    Article  CAS  Google Scholar 

  32. J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.

    Article  CAS  Google Scholar 

  33. R. Eriş, M.V. Akdeniz, and A.O. Mekhrabov: Intermetallics, 2019, vol. 109, pp. 37–47.

    Article  CAS  Google Scholar 

  34. C. Jiang, D.J. Sordelet, and B. Gleeson: Acta Mater., 2006, vol. 54, pp. 1147–54.

    Article  CAS  Google Scholar 

  35. D.E. Kim, S.L. Shang, and Z.K. Liu: Intermetallics, 2010, vol. 18, pp. 1163–71.

    Article  CAS  Google Scholar 

  36. A.Y. Lozovoi, K.V. Ponomarev, Y.K. Vekilov, P.A. Korzhavyi, and I.A. Abrikosov: Phys. Solid State, 1999, vol. 41, pp. 1494–99.

    Article  CAS  Google Scholar 

  37. A.V. Ruban and H.L. Skriver: Solid State Commun., 1996, vol. 99, pp. 813–17.

    Article  CAS  Google Scholar 

  38. S. Kirklin, J.E. Saal, V.I. Hegde, and C. Wolverton: Acta Mater., 2016, vol. 102, pp. 125–35.

    Article  CAS  Google Scholar 

  39. M. Yin, P. Nash, W. Chen, and S. Chen: J. Alloys Compd., 2016, vol. 660, pp. 258–65.

    Article  CAS  Google Scholar 

  40. R.E. Watson, M. Weinert, and M. Alatalo: Phys. Rev. B, 1998, vol. 57 (19), pp. 12134–12139.

    Article  CAS  Google Scholar 

  41. H.R. Chauke, B. Minisini, R. Drautz, D. Nguyen–Manh, P.E. Ngoepe, and D.G. Pettifor: Intermetallics, 2010, vol. 18, pp. 417–21.

    Article  CAS  Google Scholar 

  42. J.E. Saal and C. Wolverton: Acta Mater., 2013, vol. 61, pp. 2330–38.

    Article  CAS  Google Scholar 

  43. C. Tang, Y. Du, and H. Zhou: J. Alloys Compd., 2009, vol. 470, pp. 222–27.

    Article  CAS  Google Scholar 

  44. S.V. Raju, A.A. Oni, B.K. Godwal, J. Yan, V. Drozd, S. Srinivasan, J.M. LeBeau, K. Rajan, and S.K. Saxena: J. Alloys Compd., 2015, vol. 619, pp. 616–20.

    Article  CAS  Google Scholar 

  45. M. Chen and C.Y. Wang: J. Appl. Phys., 2010, vol. 107, p. 093705.

    Article  CAS  Google Scholar 

  46. S.N. Sun, N. Kioussis, and S.P. Lim: Phys. Rev. B, 1995, vol. 52 (20), pp. 14421–30.

    Article  CAS  Google Scholar 

  47. R.D. Rawlings and A.E. Staton-Bevan: J. Mater. Sci., 1975, vol. 10, pp. 505–14.

    Article  CAS  Google Scholar 

  48. Y. Huang, Z. Mao, R.D. Noebe, and D.N. Seidman: Acta Mater., 2016, vol. 121, pp. 288–98.

    Article  CAS  Google Scholar 

  49. A. Chiba, S. Hanada, and S. Watanabe: Scripta Metall. Mater., 1992, vol. 26 (7), pp. 1031–36.

    Article  CAS  Google Scholar 

  50. H. Ruan, F. Huang, Z. Zhang, and Z. Chen: Mater. Sci., 2017, vol. 23 (4), pp. 307–12.

    Google Scholar 

  51. C.Y. Geng, C.Y. Wang, and T. Yu: Acta Mater., 2004, vol. 52, pp. 5427–33.

    Article  CAS  Google Scholar 

  52. C. Li, J. Shang, L. Kou, and Z. Yue: AIP Adv., 2015, vol. 5, p. 077136.

    Article  CAS  Google Scholar 

  53. Y.J. Wang and C.Y. Wang: Appl. Phys. Lett., 2009, vol. 94, p. 261909.

    Article  CAS  Google Scholar 

  54. F. Sun, S. Mao, and J. Zhang: Mater. Chem. Phys., 2014, vol. 147, pp. 483–87.

    Article  CAS  Google Scholar 

  55. H.K. Zhang, J.S. Chen, L.X. Zhang, Z. Yu, P. Zhang, Y.Z. Zhang, C. Yu, and H. Lu: Phase Transit., 2020, vol. 93 (1), pp. 158–74.

    Article  CAS  Google Scholar 

  56. X. Gong, W.W. Xu, C. Cui, Q. Yu, W. Wang, T. Gang, and L. Chen: Mater. Des., 2020, vol. 196, p. 109174.

    Article  CAS  Google Scholar 

  57. Y.J. Wang and C.Y. Wang: Mater. Sci. Eng. A, 2008, vol. 490, pp. 242–49.

    Article  CAS  Google Scholar 

  58. Y.J. Li, Q.M. Hu, D.S. Xu, and R. Yang: Intermetallics, 2011, vol. 19, pp. 793–96.

    Article  CAS  Google Scholar 

  59. Y. Chen, S. He, Z. Yi, and P. Peng: J. Phys. Chem. Solids, 2019, vol. 131, pp. 34–43.

    Article  CAS  Google Scholar 

  60. A. Mottura, M.W. Finnis, and R.C. Reed: Acta Mater., 2012, vol. 60, pp. 2866–72.

    Article  CAS  Google Scholar 

  61. C. Wolverton: Acta Mater., 2007, vol. 55, pp. 5867–72.

    Article  CAS  Google Scholar 

  62. L. Lirong, Z. Guoqing, and J. Tao: Adv. Mater. Res., 2013, vols. 634–38, pp. 1724–28.

    Google Scholar 

  63. M. Karunaratne, C.M.F. Rae, and R.C. Reed: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2409–21.

    Article  CAS  Google Scholar 

  64. J. Rüsing, N. Wanderka, U. Czubayko, V. Naundorf, D. Mukherji, and J. Rösler: Scripta Mater., 2002, vol. 46, pp. 235–40.

    Article  Google Scholar 

  65. B. Ge, Y. Luo, J. Li, and J. Zhu: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 548–52.

    Article  CAS  Google Scholar 

  66. Y. Amouyal, Z. Mao, and D.N. Seidman: Acta Mater., 2014, vol. 74, pp. 296–308.

    Article  CAS  Google Scholar 

  67. A. Volek, F. Pyczak, R.F. Singer, and H. Mughrabi: Scripta Mater., 2005, vol. 52, pp. 141–45.

    Article  CAS  Google Scholar 

  68. M. Huang and J. Zhu: Rare Met., 2016, vol. 35 (2), pp. 127–39.

    Article  CAS  Google Scholar 

  69. X. Wu, S.K. Makineni, C.H. Liebscher, G. Dehm, J.R. Mianroodi, P. Shanthraj, B. Svendsen, D. Bürger, G. Eggeler, D. Raabe, and B. Gault (2020) Nat. Commun. 11(1):389.

    Article  CAS  Google Scholar 

  70. A.S. Wilson: Mater. Sci. Technol., 2017, vol. 33 (9), pp. 1108–18.

    Article  CAS  Google Scholar 

  71. H. Long, S. Mao, Y. Liu, H. Yang, H. Wei, Q. Deng, Y. Chen, A. Li, Z. Zhang, and X. Han: Acta Mater., 2020, vol. 185, pp. 233–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (RE) thanks The Scientific & Technological Research Council of Turkey (TUBITAK) for the National Graduate Scholarship Programme (2211).

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasim Eriş.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 30, 2020; accepted February 22, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eriş, R., Akdeniz, M.V. & Mekhrabov, A.O. The Site Preferences of Transition Elements and Their Synergistic Effects on the Bonding Strengthening and Structural Stability of γ′-Ni3Al Precipitates in Ni-Based Superalloys: A First-Principles Investigation. Metall Mater Trans A 52, 2298–2313 (2021). https://doi.org/10.1007/s11661-021-06222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06222-8

Navigation