Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of cp-Ti Processed by a Novel Technique of Rotational Constrained Bending

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, a novel severe plastic deformation technique referred to as rotational constrained bending (RCB) is introduced. A special constrained bending die, which imposes bending deformation to the billet during the first pass, was developed for repetitive processing of pre-extruded commercially pure Ti. Strain-induced microstructural changes were investigated by a special technique of automated crystal orientation mapping in TEM simultaneously with advanced X-ray line profile analysis. Plastic deformation distribution, imposed to the billets after a selected number of passes, was followed by precise microhardness mapping. Exceptional microstructure refinement was attained by the application of repetitive bending deformation. Average grain size decreased down to 400 nm, and the dislocation density increased by about 35 pct after ten passes. X-ray macrotexture measurements revealed the formation of a basal slip texture component commonly observed in HCP materials processed by equal channel angular pressing; however, exceeding four passes, a strong \( \left\{ {11{\bar{2}}0} \right\} \) fiber texture started to form. Mechanical testing in tension showed a significant increase in strength in the RCB-processed samples. The proof-stress and tensile strength increased by 30 and 15 pct after four passes, respectively. At a higher number of passes, the proof stress slightly decreased because of the texture softening.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. [1] Y.T. Zhu, T.C. Lowe, T.G. Langdon: Scripta Mater., 2004, vol. 51, pp. 825-830.

    Article  CAS  Google Scholar 

  2. [2] D.B. Witkin, E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1-60.

    Article  CAS  Google Scholar 

  3. [3] H. Gleiter: Prog. Mater. Sci., 1989, vol. 33, pp. 223-315.

    Article  CAS  Google Scholar 

  4. [4] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-189.

    Article  CAS  Google Scholar 

  5. [5] T.G. Langdon: Acta Mat., 2013, vol. 61, pp. 7035-7059.

    Article  CAS  Google Scholar 

  6. [6] J. Čížek, M. Janeček, T. Krajňák, J. Stráská, P. Hruška, J. Gubicza, H.S. Kim: Acta Mat., 2016, vol. 105, pp. 258-272.

    Article  Google Scholar 

  7. [7] Y. Duan, L. Tang, G. Xu, Y. Deng, Z. Yin: J. Alloys Comp., 2016, vol. 664, pp. 518-529.

    Article  CAS  Google Scholar 

  8. [8] J. Stráská, M. Janeček, J. Gubicza, T. Krajňák, E.Y. Yoon, H.S. Kim: Mater. Sci. Eng. A, 2015, vol. 625, pp. 98-106.

    Article  Google Scholar 

  9. [9] A.P. Zhilyaev, T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  CAS  Google Scholar 

  10. [10] V.M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157-164.

    Article  Google Scholar 

  11. [11] K. Edalati, Z. Horita: J. Mater. Sci., 2010, vol. 45, pp. 4578-4582.

    Article  CAS  Google Scholar 

  12. [12] G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu: Mater. Sci. Eng. A, 2004, vol. 382, pp. 30-34.

    Article  Google Scholar 

  13. [13] A. Rosochowski, L. Olejnik: Mater. Sci. Forum, 2011, vol. 674, pp. 19-28.

    Article  CAS  Google Scholar 

  14. [14] G.I. Raab, F.Z. Utyashev, R.N. Asfandiyarov, A.G. Raab, D.A. Aksenov, I.S. Kodirov, M. Janeček, T. Krajňák: Metals, 2020, vol. 10, pp. 879-889.

    Article  CAS  Google Scholar 

  15. M. Janeček, T. Krajňák, J. Veselý, P. Minárik, D. Preisler, J. Stráský, A.G. Raab, G.I. Raab, R.N. Asfandiyarov: IOP Conf. Ser. Mater. Sci. Eng., 2019, 672, 012006.

    Article  Google Scholar 

  16. [16] G.I. Raab, D.A. Aksenov, R.N. Asfandiyarov, A.G. Raab, I.S. Kodirov, M. Janeček: Lett. Mater., 2019, vol. 9, pp. 494-498.

    Article  Google Scholar 

  17. [17] G. Ribárik, J. Gubicza, T. Ungár: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 343-347.

    Article  Google Scholar 

  18. [18] F. Bachmann, R. Hielscher, H. Schaeben: Solid State Phenom, 2010, vol. 160, pp. 63-68.

    Article  CAS  Google Scholar 

  19. [19] H. Francillette, M. Benmaouche, N. Gauquelin: J. Mater. Process. Technol., 2008, vol. 198, pp. 86-92.

    Article  CAS  Google Scholar 

  20. [20] H.K. Lin, J.C. Huang: Mater. Trans., 2002, vol. 43, pp. 2424-2432.

    Article  CAS  Google Scholar 

  21. [21] T. Krajňák, P. Minárik, J. Gubicza, K. Máthis, R. Kužel, M. Janeček: Mater. Charact., 2017, vol. 123, pp. 282-293.

    Article  Google Scholar 

  22. [22] E.F. Rauch, M. Véron: Mater. Charact., 2014, vol. 98, pp. 1-9.

    Article  CAS  Google Scholar 

  23. A.G. Raab, D.A. Aksenov, R.N. Asfandiyarov, I.S. Kodirov, G.I. Raab: IOP Conf. Ser. Mater. Sci. Eng., 2018, vol. 447, 012088.

    Article  Google Scholar 

  24. [24] G. Purcek, G.G. Yapici, I. Karaman, H.J. Maier: Mater. Sci. Eng. A, 2011, vol. 528, pp. 2303-2308.

    Article  Google Scholar 

  25. [25] K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski: Materials Chemistry and Physics, 2014, vol. 143, pp. 1032-1038.

    Article  CAS  Google Scholar 

  26. [26] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev: Mater. Sci. Eng. A, 2003, vol. 343, pp. 43-50.

    Article  Google Scholar 

  27. [27] Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, S.S. Gireesh, S. Armada, P.C. Skaret, H.J. Roven: Scr. Mater., 2011, vol. 64, pp. 904-907.

    Article  CAS  Google Scholar 

  28. [28] C.S. Meredith, A.S. Khan: J. Mater. Process. Technol., 2015, vol. 219, pp. 257-270.

    Article  CAS  Google Scholar 

  29. [29] A. Ghaderi, M.R. Barnett: Acta Mat., 2001, vol. 59, pp. 7824-7839.

    Article  Google Scholar 

  30. [30] Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, P.C. Skaret, H.J. Roven: Mater. Sci. Eng. A, 2010, vol. 527, pp. 789-796.

    Article  Google Scholar 

  31. [31] T. Krajňák, P. Minárik, J. Stráská, J. Gubicza, K. Máthis, M. Janeček: J. Alloys Comp., 2017, vol. 705, pp. 273-282.

    Article  Google Scholar 

  32. [32] G. Németh, K. Horváth, Ch. Hervoches, P. Cejpek, J. Palán, M. Duchek, K. Máthis: Metals, 2018, vol. 8, pp. 1000-1019.

    Article  Google Scholar 

  33. [33] T. Mukai, M. Yamanoi, H. Watanabe, K. Higashi: Scr. Mater., 2001, vol. 45, pp. 89-94.

    Article  CAS  Google Scholar 

  34. Y. Murakami: Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions, 2nd ed., Academic Press, Boca Raton 2019, pp. 293-316.

    Book  Google Scholar 

  35. [35] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611.

    Article  CAS  Google Scholar 

  36. [36] K.T. Park and D.H. Shin: Metall. Mater. Trans. A, 2002, vol. 33, pp. 705-07.

    Article  Google Scholar 

  37. [37] Y.M. Wang, E. Ma: Acta Mat., 2004, vol. 52, pp. 1699-1709.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project LTARF18010 and by the Ministry of Science and Higher Education of the Russian Federation under grant agreement no. 14.586.21.0059 (UIN: RFMEFI58618X0059). Partial financial support by ERDF project no. CZ.02.1.01/0.0/0.0/15_003/0000485 is also gratefully acknowledged. This work was supported in part by the Ministry of Human Capacities of Hungary within the ELTE University Excellence program (1783-3/2018/FEKUTSRAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Krajňák.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 26, 2020, January 7, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krajňák, T., Janeček, M., Minárik, P. et al. Microstructure Evolution and Mechanical Properties of cp-Ti Processed by a Novel Technique of Rotational Constrained Bending. Metall Mater Trans A 52, 1665–1678 (2021). https://doi.org/10.1007/s11661-021-06157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06157-0

Navigation