Skip to main content
Log in

Investigation of Solidification and Precipitation Behavior of Si-Modified 7075 Aluminum Alloy Fabricated by Laser-Based Powder Bed Fusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fabrication of high strength aluminum alloys using laser-based powder bed fusion (L-PBF) encounters challenges, including the occurrence of solidification cracks and the loss of volatile elements, such as Zn and Mg. The current work developed a Si-modified Al7075 alloy aiming at introducing eutectic phases to mitigate the solidification cracking during L-PBF. Based on Kou’s model, the addition of Zn and Mg decreased the crack susceptibility from 6504 °C to 5966 °C, and the addition of 3.74 wt pct of Si further decreased the crack susceptibility to 3960 °C. The Al7075 alloy fabricated by L-PBF exhibited a large amount of solidification cracks extending throughout the sample. Crack-free samples with a relative density of 99.94 pct, as inspected by X-ray microcomputed tomography, were achieved for the developed Si-modified Al7075 alloy. The microstructure showed a transition from a coarse columnar microstructure to a refined mixed columnar + equiaxed microstructure after alloy modification, with a concomitant grain size reduction from 59.0 ± 42.2 to 15.0 ± 9.4 µm. Moreover, Si, Mg2Si, and Al2Cu phases were detected in the Si-modified Al7075 alloy. After a direct ageing heat treatment, the Si-modified Al7075 alloy showed minimal age hardening effect with a peak hardness of (146 ± 3 Hv).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1 S.D. Nath, H. Irrinki, G. Gupta, M. Kearns, O. Gulsoy, and S. Atre: Powder Technol., 2019, vol. 343, pp. 738–46.

    CAS  Google Scholar 

  2. 2 D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann: Acta Mater., 2016, vol. 117, pp. 371–92.

    CAS  Google Scholar 

  3. 3 L. Xi, D. Gu, K. Lin, S. Guo, Y. Liu, Y. Li, and M. Guo: J. Mater. Res., 2020, vol. 35, pp. 559–70.

    CAS  Google Scholar 

  4. P. Rambabu, N. Eswara Prasad, V. V. Kutumbarao, and R.J.H. Wanhill: 2017, pp. 29–52.

  5. 5 M. Zuo, M. Sokoluk, C. Cao, J. Yuan, S. Zheng, and X. Li: Sci. Rep., 2019, vol. 9, pp. 1–11.

    Google Scholar 

  6. 6 J. Lu, Y. Song, L. Hua, K. Zheng, and D. Dai: J. Alloys Compd., 2018, vol. 767, pp. 856–69.

    CAS  Google Scholar 

  7. 7 F. Bosio, A. Aversa, M. Lorusso, S. Marola, D. Gianoglio, L. Battezzati, P. Fino, D. Manfredi, and M. Lombardi: Mater. Des., 2019, vol. 181, p. 107949.

    CAS  Google Scholar 

  8. K. Nishimoto, K. Saida, K. Kiuchi, and J. Nakayama: Influence of Minor and Impurity Elements on Hot Cracking Susceptibility of Extra High-Purity Type 310 Stainless Steels, 2011.

  9. H. Zhao and T. Debroy: Metall. Mater. Trans. B., 2001, vol. 32, pp. 163–72.

    CAS  Google Scholar 

  10. G. Agarwal, A. Kumar, H. Gao, M. Amirthalingam, S.C. Moon, R.J. Dippenaar, I.M. Richardson, and M.J.M. Hermans: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1015–20.

    Google Scholar 

  11. 11 A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino, and M. Lombardi: Materials (Basel)., 2019, vol. 12, p. 1007.

    CAS  Google Scholar 

  12. T. Boellinghaus, J.C. Lippold, and C.E.C. Editors: Cracking Phenomena in Welds IV. Springer, Cham, 2016.

  13. 13 G. Agarwal, A. Kumar, I.M. Richardson, and M.J.M. Hermans: Mater. Des., 2019, vol. 183, p. 108104.

    CAS  Google Scholar 

  14. 14 P.A. Hooper: Addit. Manuf., 2018, vol. 22, pp. 548–59.

    CAS  Google Scholar 

  15. 15 M.L. Montero-Sistiaga, Z. Liu, L. Bautmans, S. Nardone, G. Ji, J.-P. Kruth, J. Van Humbeeck, and K. Vanmeensel: Addit. Manuf., 2020, vol. 31, p. 100995.

    CAS  Google Scholar 

  16. 16 R. Mertens, S. Dadbakhsh, J. Van Humbeeck, and J.P. Kruth: Procedia CIRP, 2018, vol. 74, pp. 5–11.

    Google Scholar 

  17. 17 D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, and J. Schrage: J. Laser Appl., 2014, vol. 26, p. 012004.

    Google Scholar 

  18. 18 M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, and J.-P. Kruth: Appl. Sci., 2017, vol. 7, p. 250.

    Google Scholar 

  19. 19 P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, and S. Scudino: Compos. Part B Eng., 2018, vol. 147, pp. 162–8.

    CAS  Google Scholar 

  20. 20 D. Carluccio, M.J. Bermingham, Y. Zhang, D.H. StJohn, K. Yang, P.A. Rometsch, X. Wu, and M.S. Dargusch: J. Manuf. Process., 2018, vol. 35, pp. 715–20.

    Google Scholar 

  21. 21 M. Sokoluk, C. Cao, S. Pan, and X. Li: Nat. Commun., 2019, vol. 10, pp. 1–8.

    CAS  Google Scholar 

  22. 22 J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature, 2017, vol. 549, pp. 365–9.

    CAS  Google Scholar 

  23. 23 L. Zhou, H. Pan, H. Hyer, S. Park, Y. Bai, B. McWilliams, K. Cho, and Y. Sohn: Scr. Mater., 2019, vol. 158, pp. 24–8.

    CAS  Google Scholar 

  24. 24 Z. Lei, J. Bi, Y. Chen, X. Chen, X. Qin, and Z. Tian: Powder Technol., 2019, vol. 356, pp. 594–606.

    CAS  Google Scholar 

  25. 25 H. Hu, M. Zhao, X. Wu, Z. Jia, R. Wang, W. Li, and Q. Liu: J. Alloys Compd., 2016, vol. 681, pp. 96–108.

    CAS  Google Scholar 

  26. 26 F. Sun, G.L. Nash, Q. Li, E. Liu, C. He, C. Shi, and N. Zhao: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1015–22.

    CAS  Google Scholar 

  27. 27 G. Bo, F. Jiang, Z. Dong, G. Wang, and H. Zhang: Mater. Sci. Eng. A, 2019, vol. 755, pp. 147–57.

    CAS  Google Scholar 

  28. M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, and J. Van Humbeeck: J. Mater. Process. Technol., 2016, vol. 238, pp. 437–45.

  29. 29 C. Huang, G. Cao, and S. Kou: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 149–57.

    CAS  Google Scholar 

  30. 30 M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30, pp. 449–55.

    CAS  Google Scholar 

  31. 31 S. Kou: Acta Mater., 2015, vol. 88, pp. 366–74.

    CAS  Google Scholar 

  32. 32 J. Liu and S. Kou: Acta Mater., 2017, vol. 125, pp. 513–23.

    CAS  Google Scholar 

  33. 33 P. Schaffnit, C. Stallybrass, J. Konrad, F. Stein, and M. Weinberg: Calphad Comput. Coupling Phase Diagrams Thermochem., 2015, vol. 48, pp. 184–8.

    CAS  Google Scholar 

  34. G.H. Gulliver: The Quantitative Effect of Rapid Cooling upon the Constitution of Binary Alloys, vol. 9, 1913.

  35. 35 R. Cohn, B. Fullenwider, K. Ma, and J.M. Schoenung: Adv. Eng. Mater., 2018, vol. 20, pp. 1–7.

    CAS  Google Scholar 

  36. 36 N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, and R. Hague: Prog. Mater. Sci., 2019, vol. 106, p. 100578.

    CAS  Google Scholar 

  37. X. Gong, T. Anderson, and K. Chou: Manuf. Rev., https://doi.org/10.1051/mfreview/2014001.

  38. 38 S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, and R.B. Wicker: Mater. Technol., 2009, vol. 24, pp. 180–90.

    CAS  Google Scholar 

  39. 39 L. Thijs, K. Kempen, J.P. Kruth, and J. Van Humbeeck: Acta Mater., 2013, vol. 61, pp. 1809–19.

    CAS  Google Scholar 

  40. 40 T. Böllinghaus, H. Herold, C.E. Cross, and J.C. Lippold: Hot Cracking Phenomena in Welds II, Springer-Verlag Berlin Heidelberg, 2008.

    Google Scholar 

  41. 41 J.C. Lippold: Weld. Metall. Weldability, 2014, vol. 9781118230, pp. 1–400.

    Google Scholar 

  42. 42 M. Kang and C. Kim: J. Weld. Join., 2017, vol. 35, pp. 79–88.

    Google Scholar 

  43. A.M. Mitrašinović and F.C.R. Hernández: Mater. Sci. Eng. A, 2012, vol. 540, pp. 63–69.

    Google Scholar 

  44. 44 Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, and L.C. Zhang: J. Alloys Compd., 2018, vol. 735, pp. 1414–21.

    CAS  Google Scholar 

  45. 45 L. Zhou, H. Pan, H. Hyer, S. Park, Y. Bai, B. McWilliams, K. Cho, and Y. Sohn: Scr. Mater., 2019, vol. 158, pp. 24–8.

    CAS  Google Scholar 

  46. 46 K.R. Ramkumar, H. Bekele, and S. Sivasankaran: Adv. Mater. Sci. Eng., 2015, vol. 2015, pp. 1–14.

    Google Scholar 

  47. 47 A. Hadadzadeh, B.S. Amirkhiz, and M. Mohammadi: Mater. Sci. Eng. A, 2019, vol. 739, pp. 295–300.

    CAS  Google Scholar 

  48. E. Sjölander and S. Seifeddine: Metall. Mater. Trans. A 2014, vol. 45, pp. 1916–27.

    Google Scholar 

  49. 49 A.M. Samuel, J. Gauthier, and F.H. Samuel: Metall. Mater. Trans. A, 1996, vol. 27, pp. 1785–98.

    CAS  Google Scholar 

  50. 50 V.C. Pierre, B. Anthony, T. Lore, V.H. Brecht, and V. Kim: Euro PM 2018 Congr. Exhib., 2020, pp. 1–7.

    Google Scholar 

Download references

Acknowledgments

This work was funded by the European Union’s Horizon 2020 Clean Sky 2 research and innovation program under grant agreement No 755610, project AlForAMA. The authors acknowledge the support from the topic manager, Leonardo Aircraft. L-PBF experiments were conducted thanks to the KU Leuven funding under contract number GOA/15/012 - Sustainable Material Processing in Manufacturing. The X-ray computed tomography facilities of KU Leuven is acknowledged for the X-ray µ-CT inspections. G. Li wishes to thank the China Scholarship Council (Grant No. 201706220083) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guichuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 5, 2020; accepted October 17, 2020.

Electronic Supplementary material

Below is the link to the Electronic Supplementary material.

Supplementary material 1 (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Jadhav, S.D., Martín, A. et al. Investigation of Solidification and Precipitation Behavior of Si-Modified 7075 Aluminum Alloy Fabricated by Laser-Based Powder Bed Fusion. Metall Mater Trans A 52, 194–210 (2021). https://doi.org/10.1007/s11661-020-06073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06073-9

Navigation