Skip to main content
Log in

Effects of Dynamic Strain Aging on Strain Hardening Behavior, Dislocation Substructure, and Fracture Morphology in a Ferritic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dynamic strain aging at different temperatures and its effects on the strain hardening behavior, dislocation substructure and fracture morphology in a stainless steel grade 430 was investigated. Sheet type specimens were subjected to tensile tests performed at a temperature range of 298 K to 873 K. Subsequently, the strain hardening behavior of the material was depicted via modified Crussard–Jaoul analysis, strain hardening rate, and instantaneous strain hardening exponent curves. Changes in the dislocation substructure during the tests were characterized by means of X-ray diffraction and transmission electron microscopy. Scanning electron microscopy was used to investigate the fracture morphology of the specimens. The results indicated the occurrence of dynamic strain aging from 523 K to 773 K by the presence of the Portevin–Le Chatelier effect. These results were reinforced by the strain hardening analysis that revealed a three staged behavior at most of the studied temperatures, except during the dynamic strain aging regime, which presented an extra stage. Different substructures were observed as a function of the test temperatures: cellular dislocation substructure in the samples deformed at 298 K and 673 K, an array of straight and parallel dislocations in conjunction with a cellular substructure at 673 K, and finally a subgrained substructure with fine precipitates was formed at 873 K. A ductile surface fracture presenting a network of dimples and voids was present at all investigated temperatures, with a dimple size refinement being observed during the dynamic strain aging regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Avalos, I. Alvarez-Armas, A. Armas: Mater. Sci. Eng. A, 2009, 513-514, 1. https://doi.org/10.1016/j.msea.2009.01.047

    Article  CAS  Google Scholar 

  2. D. Caillard: Acta Mater., 2016, 112, 273. https://doi.org/10.1016/j.actamat.2016.04.018

    Article  CAS  Google Scholar 

  3. P. Rodriguez: Bull. Mater. Sci., 1984, 6, 653. https://doi.org/10.1007/BF02743993

    Article  Google Scholar 

  4. W. Karlsen, M. Ivanchenko, U. Ehrnstén, Y. Yagodzinskyy, H. Hänninen: J. Nucl. Mater., 2009, 395, 156. https://doi.org/10.1016/j.jnucmat.2009.10.047

    Article  CAS  Google Scholar 

  5. B.K. Choudhary, E.I. Samuel, G. Sainath, J. Christopher, M.D. Mathew: Metall. Mater. Trans. A, 2013, 44A, 4979. https://doi.org/10.1007/s11661-013-1869-6

    Article  CAS  Google Scholar 

  6. C.C. Li, W.C. Leslie: Metall. Trans. A, 1978, 9, 1765. https://doi.org/10.1007/BF02663406

    Article  Google Scholar 

  7. T. Manninen, J. Säynäjäkangas: in Proc. Fourth Int. Expert. Semin. Stainl. Steel Struct., vol. 4th, ed. by SCI (Ascot, 2012), vol. 4th, pp. 1–15

  8. P.O. Malta, D.S. Alves, A.O.V. Ferreira, I.D. Moutinho, C.A.P. Dias, D.B. Santos: Metall. Mater. Trans. A, 2017, 48A, 1288. https://doi.org/10.1007/s11661-016-3935-3

    Article  CAS  Google Scholar 

  9. W.A. Curtin, D.L. Olmsted, L.G. Hector: Nat. Mater., 2006, 5, 875. https://doi.org/10.1038/nmat1765

    Article  CAS  Google Scholar 

  10. B.K. Choudhary, J. Christopher: Mater. Sci. Eng. A, 2015, 636, 269. https://doi.org/10.1016/j.msea.2015.03.107

    Article  CAS  Google Scholar 

  11. ASTM: ASTM Int., (2014), 1. https://doi.org/10.1520/A0370-14.2

  12. B.K. Jha, R. Avtar, V.S. Dwivedi, V. Ramaswamy: J. Mater. Sci. Lett., 1987, 6, 891. https://doi.org/10.1007/BF01729860

    Article  CAS  Google Scholar 

  13. M.H. Cai, H. Ding, Z.Y. Tang, H.Y. Lee, Y.K. Lee: Steel Res. Int., 2011, 82, 242. https://doi.org/10.1002/srin.201000132

    Article  CAS  Google Scholar 

  14. R.E. Reed-Hill: On the Dynamics of Dislocation Pinning During Dynamic Strain Aging. Tech. rep., DTIC Document, Florida (1973)

  15. S. Tjong, S. Zhu: Mater. Trans., 1997, 38, 112

    Article  CAS  Google Scholar 

  16. I. Groma: Phys. Rev. B, 1998, 57, 7535. https://doi.org/10.1103/PhysRevB.57.7535

    Article  CAS  Google Scholar 

  17. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömme, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, H. Strunk, Philos. Mag. A, 77, 1013–25 (1998) https://doi.org/10.1080/01418619808221225

    Article  CAS  Google Scholar 

  18. J. Gubicza, J. Szepvolgi, I. Mohai, L. Zsoldo, T. Ungár: Mater. Sci. Eng. A, 2000, 280, 263

    Article  Google Scholar 

  19. T. Shintani, Y. Murata, Y. Terada, M. Morinaga: J. Jpn. Inst. Met., 2010, 74, 806. https://doi.org/10.2320/jinstmet.74.806

    Article  CAS  Google Scholar 

  20. F. Humphreys, M. Hatherly, Recrystallisation and Related Annealing Phenomena, second edi edn. (Elsevier, Oxford, 2004)

    Google Scholar 

  21. C. Gupta, J.K. Chakravartty, S.L. Wadekar, J.S. Dubey: Mater. Sci. Eng. A, 2000, 292, 49. https://doi.org/10.1016/S0921-5093(00)00992-8

    Article  Google Scholar 

  22. B.K. Choudhary: Mater. Sci. Eng. A, 2013, 564, 303. https://doi.org/10.1016/j.msea.2012.11.104

    Article  CAS  Google Scholar 

  23. P. Verma, G. S. Rao, P. Chellapandi, G. Mahobia, K. Chattopadhyay, N. S. Srinivas, V. Singh: Mater. Sci. Eng. A, 621, 39-51 (2015). https://doi.org/10.1016/j.msea.2014.10.011

    Article  CAS  Google Scholar 

  24. A.K. Roy, P. Kumar, D. Maitra: Mater. Sci. Eng. A, 499, 379 (2009). https://doi.org/10.1016/j.msea.2008.08.027

    Article  CAS  Google Scholar 

  25. Y.T. Chiu, C.K. Lin, J.C. Wu: J. Power Sources, 2011, 2005, 2005. https://doi.org/10.1016/j.jpowsour.2010.09.083

    Article  CAS  Google Scholar 

  26. S.C. Tjong, S.M. Zhu: Metall. Mater. Metall. Trans. A, 1997, 28, 1347. https://doi.org/10.1007/s11661-997-0271-7

    Article  Google Scholar 

  27. K. Gopinath, A.K. Gogia, S.V. Kamat, U. Ramamurty: Acta Mater., 2009, 57, 1243. https://doi.org/10.1016/j.actamat.2008.11.005

    Article  CAS  Google Scholar 

  28. B.K. Choudhary, D.P.R. Palaparti, E.I. Samuel, Metall. Mater. Trans. A, 44, 212-23 (2013). https://doi.org/10.1007/s11661-012-1385-0

    Article  CAS  Google Scholar 

  29. J. Baird, C. MacKenzie: J. Iron Steel Inst., 1964, 202, 427

    CAS  Google Scholar 

  30. B. Brindley, J. Barnby: Acta Metall., 1966, 14, 1765. https://doi.org/10.1016/0001-6160(66)90028-9

    Article  CAS  Google Scholar 

  31. D. Caillard, J. Bonneville: Scr. Mater., 2015, 95, 15. https://doi.org/10.1016/j.scriptamat.2014.09.019

    Article  CAS  Google Scholar 

  32. L. Ventelon, B. Lüthi, E. Clouet, L. Proville, B. Legrand, D. Rodney, F. Willaime, Phys. Rev. B, 91 (2015). https://doi.org/10.1103/PhysRevB.91.220102

    Article  CAS  Google Scholar 

  33. E.I. Samuel, B.K. Choudhary, K. B. Rao, Scr. Mater., 46, 507-12 (2002). https://doi.org/10.1016/S1359-6462(02)00023-4

    Article  CAS  Google Scholar 

  34. A. Keh, Y. Nakada, W. Leslie: I=in Dislocation Dyn., A. Rosenfield, G. Hahn, A. Bement Jr., R. Jaffe, eds., McGraw Hill, Nova York, 1968, p. 381.

  35. F. Gao, X.U. Yourong, B. Song, K. Xia, Metall. Mater. Trans. A, 31A, 21-27 (2000). https://doi.org/10.1007/s11661-000-0048-8

    Article  CAS  Google Scholar 

  36. K. Peng, K. Qian, W. Chen: Mater. Sci. Eng. A, 2004, 379, 372. https://doi.org/10.1016/j.msea.2004.03.004

    Article  CAS  Google Scholar 

  37. H. Krafft: Pract. Fail. Anal., 2002, 2, 39. https://doi.org/10.1007/BF02715452

    Article  Google Scholar 

  38. R. Kaçar, S. Gündüz: Kov. Mater., 2009, 47, 185

    Google Scholar 

  39. J. Mola, B.C. De Cooman: Scr. Mater., 2011, 65, 834. https://doi.org/10.1016/j.scriptamat.2011.07.041

    Article  CAS  Google Scholar 

  40. Z.Q. Wu, H. Ding, H.Y. Li, M.L. Huang, F.R. Cao: Mater. Sci. Eng. A, 2013, 584, 150. https://doi.org/10.1016/j.msea.2013.07.023

    Article  CAS  Google Scholar 

  41. S. Vafaeian, A. Fattah-alhosseini, Y. Mazaheri, M. Keshavarz: Mater. Sci. Eng. A, 2016, 669, 480. https://doi.org/10.1016/j.msea.2016.04.050

    Article  CAS  Google Scholar 

  42. D.P.R. Palaparti, B.K. Choudhary, J. Christopher, E.I. Samuel, M.D. Mathew: Mater. High Temp., 2013, 30, 295. https://doi.org/10.3184/096034013X13808197639117

    Article  CAS  Google Scholar 

  43. G. Sainath, B. Choudhary, J. Christopher, E. I. Samuel, M. Mathew, Int. J. Press. Vessel. Pip., 132, 1–9 (2015). https://doi.org/10.1016/j.ijpvp.2015.05.004

    Article  CAS  Google Scholar 

  44. I. Ekaputra, W.G. Kim, J.Y. Park, S.J. Kim, E.S. Kim: Nucl. Eng. Technol., 2016, 48, 1387. https://doi.org/10.1016/j.net.2016.06.013

    Article  CAS  Google Scholar 

  45. V. Shterner, I.B. Timokhina, H. Beladi: Mater. Sci. Eng. A, 2016, 669, 437. https://doi.org/10.1016/j.msea.2016.05.104

    Article  CAS  Google Scholar 

  46. S. Okamoto, D.K. Matlock, G. Krauss: Scr. Metall. Mater., 1991, 25, 39. https://doi.org/10.1016/0956-716X(91)90350-A

    Article  CAS  Google Scholar 

  47. B.P. Kashyap, K. McTaggart, K. Tangri, Philos. Mag. A, 57, 97-114 (1988). https://doi.org/10.1080/01418618808204501

    Article  CAS  Google Scholar 

  48. P. Maj, J. Zdunek, J. Mizera, K.J. Kurzydlowski, B. Sakowicz, M. Kaminski: Met. Mater. Int., 2017, 23, 54. https://doi.org/10.1007/s12540-017-6264-1

    Article  CAS  Google Scholar 

  49. D. Yu, W. Yu, G. Chen, F. Jin, X. Chen: Mater. Sci. Eng. A, 2012, 558, 730. https://doi.org/10.1016/j.msea.2012.08.088

    Article  CAS  Google Scholar 

  50. Z. Akbari, H. Mirzadeh, J.M. Cabrera: Mater. Des., 2015, 77, 126. https://doi.org/10.1016/j.matdes.2015.04.005

    Article  CAS  Google Scholar 

  51. T. Li, J. Zheng, Z. Chen: Springerplus, 2016, 5, 1316. https://doi.org/10.1186/s40064-016-2998-3

    Article  CAS  Google Scholar 

  52. Y. Yazawa, Y. Ozaki, Y. Kato, O. Furukimi: JSAE Rev., 2003, 24, 483. https://doi.org/10.1016/S0389-4304(03)00082-1

    Article  CAS  Google Scholar 

  53. N. Chibane, H. Ait-Amokhtar, C. Fressengeas: Scr. Mater., 2017, 130, 252. https://doi.org/10.1016/j.scriptamat.2016.11.037

    Article  CAS  Google Scholar 

  54. F. Gao, Z. Liu, R.D.K. Misra, H. Liu, F. Yu: Met. Mater. Int., 2014, 20, 939. https://doi.org/10.1007/s12540-014-5020-z

    Article  CAS  Google Scholar 

  55. A.R. Das, T. Chowdhury, S. Sivaprasad, H.N. Bar, N. Narasaiah, S. Tarafder: Int. J. Fract., 2016, 202, 79. https://doi.org/10.1007/s10704-016-0134-6

    Article  CAS  Google Scholar 

  56. C. Gupta, J.K. Chakravartty, S.L. Wadekar, S. Banerjee: Scr. Mater., 2006, 55, 1091. https://doi.org/10.1016/j.scriptamat.2006.08.045

    Article  CAS  Google Scholar 

  57. P. Noell, J. Carroll, K. Hattar, B. Clark, B. Boyce: Acta Mater., 2017, 137, 103. https://doi.org/10.1016/j.actamat.2017.07.004

    Article  CAS  Google Scholar 

  58. E. Pink, P. Bruckbauer, H. Weinhandl: Scr. Mater., 1998, 38, 945. https://doi.org/10.1016/S1359-6462(97)00571-X

    Article  CAS  Google Scholar 

  59. H. Dierke, F. Krawehl, S. Graff, S. Forest, J. Šachl, H. Neuhäuser: Comput. Mater. Sci., 2007, 39, 106. https://doi.org/10.1016/j.commatsci.2006.03.019

    Article  CAS  Google Scholar 

  60. F.F. Han, B.M. Zhou, H.F. Huang, B. Leng, Y.L. Lu, J.S. Dong, Z.J. Li, X.T. Zhou: Mater. Chem. Phys., 2016, 182, 22. https://doi.org/10.1016/j.matchemphys.2016.07.001

    Article  CAS  Google Scholar 

  61. E. Pink, A. Grinberg: Mater. Sci. Eng., 1981, 51, 1. https://doi.org/10.1016/0025-5416(81)90099-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Berenice Mendonça Gonzalez for her notable insights and contribution to this work. This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROEX)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Soares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 31, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, G.C., Queiroz, R.R.U. & Santos, L.A. Effects of Dynamic Strain Aging on Strain Hardening Behavior, Dislocation Substructure, and Fracture Morphology in a Ferritic Stainless Steel. Metall Mater Trans A 51, 725–739 (2020). https://doi.org/10.1007/s11661-019-05574-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05574-6

Navigation