Skip to main content
Log in

Influences of Laser Surface Alloying with Cr on Microstructural Characteristics and Hardness of Pure Ti

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A high-purity Ti sheet was treated by laser surface alloying (LSA) with Cr at two different powers (100 and 200 W), with microstructural features in various laser-modified zones characterized by energy-dispersive spectrometry, electron channeling contrast imaging, and electron backscatter diffraction techniques. Hardness variation induced by the LSA was also examined and correlated with these microstructural features. Results show that at both laser powers there are two modification zones with distinct microstructural characteristics: (i) melted zone (MZ) near the surface, composed of martensitic α plates supersaturated with Cr and dense nanotwins inside them; (ii) heat-affected zone (HAZ) beneath the MZ, featured by irregular-shaped grains and substructures with varied sizes and little Cr in their interiors. Hardness measurements show that remarkable hardness increase (~ 2.5 times that of the matrix) could occur in the MZ after the LSA treatments. This can be ascribed to combined contribution from grain refinement, the presence of abundant nanotwins, and solid solution of Cr. The subgrains in the HAZ, produced by dislocation recovery, have only marginal contribution to hardness increase. The hardness of the Ti(Cr)-200W specimen is slightly lower than that of the Ti(Cr)-100W specimen, which is related to the dilution of Cr and the reduced cooling rate associated with enlarged modification zone at higher power. After comparing with laser surface treatments without alloying, it is confirmed that the LSA with Cr in the present work is much more effective in hardening the surface of pure Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Gurrappa: Mater. Charact., 2003, vol. 51, pp. 131-39.

    Article  Google Scholar 

  2. M.A.-H. Gepreel and M. Niinomi: J. Mech. Behav. Biomed. Mater., 2013, vol. 20, pp. 407-15.

    Article  Google Scholar 

  3. C. Cui, B.M. Hu, L. Zhao, and S. Liu: Mater. Des., 2011, 32, 1684-91.

    Article  Google Scholar 

  4. J.-Y. Xia, L.-J. Chai, H. Wu, Y. Zhi, Y.-N. Gou, W.-J. Huang, N. Guo: Acta Metall. Sin., 2018, 31, 1215-23.

    Article  Google Scholar 

  5. Y.S. Tian, C.Z. Chen, S.T. Li, and Q.H. Huo: Appl. Surf. Sci., 2005, 242, 177-84.

    Article  Google Scholar 

  6. A.E. Medvedev, H.P. Ng, R. Lapovok, Y. Estrin, T.C. Lowe, and V.N. Anumalasetty: J. Mech. Behav. Biomed. Mater., 2016, vol. 57, pp. 55-68.

    Article  Google Scholar 

  7. H. Guleryuz and H. Cimenoglu: Surf. Coat. Technol., 2005, vol. 192, pp. 164-70.

    Article  Google Scholar 

  8. I. Watanabe, M. McBride, P. Newton, and K.S. Kurtz: Dent. Mater., 2009, 25, 629-33.

    Article  Google Scholar 

  9. J.B. Fogagnolo, A.V. Rodrigues, M.S.F. Lima, V. Amigó, and R. Caram: Scripta Mater., 2013, vol. 68, pp. 471-74.

    Article  Google Scholar 

  10. Y. Zhu, D. Liu, X. Tian, H. Tang, and H. Wang: Mater. Des., 2014, 56, 445-53.

    Article  Google Scholar 

  11. S. Chen, A.D. Usta, and M. Eriten: Surf. Coat. Technol., 2017, vol. 315, pp. 220-31.

    Article  Google Scholar 

  12. W.-F. Ho, T.-Y. Chiang, S.-C. Wu, and H.-C. Hsu: J. Alloys Compd., 2009, 468, 533-38.

    Article  Google Scholar 

  13. Y. Guo and G.S. Frankel: Surf. Coat. Technol.,2012, vol. 206, pp. 3895-3902.

    Article  Google Scholar 

  14. D. Banerjee and J.C. Williams: Acta Mater., 2013, 61, 844-79.

    Article  Google Scholar 

  15. D.-B. Wei, P.-Z. Zhang, Z.-J. Yao, W.-P. Liang, Q. Miao, and Z. Xu: Corros. Sci., 2013, vol. 66, pp. 43-50.

    Article  Google Scholar 

  16. Y.Z. Zhang, C. Meacock, and R. Vilar: Mater. Des., 2010, 31, 3891-95.

    Article  Google Scholar 

  17. H.-C. Hsu, S.-C. Wu, T.-Y. Chiang, and W.-F. Ho: J. Alloys Compd., 2009, 476, 817-25.

    Article  Google Scholar 

  18. J.W. Won, D. Kim, S.-G. Hong, and C.S. Lee: J. Alloys Compd., 2016, 683, 92-99.

    Article  Google Scholar 

  19. F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833-54.

    Article  Google Scholar 

  20. A.V. Dobromyslov, G.V. Dolgikh, Ya. Dutkevich, and T.L. Trenogina: Phys. Met. Metallogr., 2009, vol. 107, pp. 502-10.

    Article  Google Scholar 

  21. G.C. Obasi, S. Birosca, J. Fonseca, and M. Preuss: Acta Mater., 2012, 60, 1048-58.

    Article  Google Scholar 

  22. S.C. Wang, M. Aindow, and M.J. Starink: Acta Mater., 2003, 51, 2485-2503.

    Article  Google Scholar 

  23. L. Chai, H. Wu, Z. Zheng, H. Guan, H. Pan, N. Guo, and B. Song: J. Alloys Compd., 2018, 741, 116-22.

    Article  Google Scholar 

  24. Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang: Metall. Mater. Trans. A, 2010, 41A, 3473-87.

    Article  Google Scholar 

  25. Z. Zeng, Y. Zhang, and S. Jonsson: Mater. Sci. Eng. A, 2009, 513, 83-90.

    Article  Google Scholar 

  26. Y.B. Chun and S.K. Hwang: Acta Mater., 2008, 56, 369-79.

    Article  Google Scholar 

  27. Z. Zeng, S. Jonsson, and H.J. Roven: Acta Mater., 2009, 57, 5822-33.

    Article  Google Scholar 

  28. Z. Nishiyama, M. Oka, and H. Nakagawa: Trans. Jpn. Inst. Met., 1966, vol. 7, pp. 174-77.

    Article  Google Scholar 

  29. M.H. Yoo: Metall. Trans. A, 1981, 12A, 409-18.

    Article  Google Scholar 

  30. S.J. Lainé and K.M. Knowles: Philos. Mag., 2015, vol. 95, pp. 2153-66.

    Article  Google Scholar 

  31. R.H. Ericksen, R. Taggart, and D.H. Polonis: Acta Metall., 1969, vol. 17, pp. 553-64.

    Article  Google Scholar 

  32. S. Banerjee, S.J. Vijayakar, and R. Krishnan: Acta Metall., 1978, vol. 26, pp. 1815-31.

    Article  Google Scholar 

  33. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096-98.

    Article  Google Scholar 

  34. Z. You, X. Li, L. Gui, Q. Lu, T. Zhu, H. Gao, and L. Lu: Acta Mater., 2013, vol. 61, pp. 217-27.

    Article  Google Scholar 

  35. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao: Nature, 2010, vol. 464, pp. 877-80.

    Article  Google Scholar 

  36. L. Chai, H. Wu, S. Wang, K. Chen, T. Wang, and J. Xia: Mater. Chem. Phys., 2017, 198, 303-09.

    Article  Google Scholar 

  37. L. Chai, K. Chen, Y. Zhi, K.L. Murty, L.-Y. Chen, and Z. Yang: J. Alloys Compd., 2018, 748, 163-70.

    Article  Google Scholar 

  38. R.I. Jaffee: Prog. Met. Phys., 1958, vol. 7, pp. 65-163.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by the Fundamental and Cutting-Edge Research Plan of Chongqing (cstc2018jcyjAX0299) and the Education Reform Project for Professional Degree Graduate of Chongqing University of Technology (ZSSD103-2018CLCXCY1005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linjiang Chai or Ling Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zeng, L., Li, Z. et al. Influences of Laser Surface Alloying with Cr on Microstructural Characteristics and Hardness of Pure Ti. Metall Mater Trans A 50, 3794–3804 (2019). https://doi.org/10.1007/s11661-019-05312-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05312-y

Navigation