Skip to main content

Advertisement

Log in

Microstructure Evolution of Fine-Grained Heat-Affected Zone of Gr.92 Steel Welded Joint During Creep

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure evolution of fine-grained heat-affected zone (FGHAZ) of Gr.92 steel welded joint has been investigated during creep using scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. The microstructure evolution strongly depended on the applied stress level. At the stress level of 90 MPa, the grains of the FGHAZ were coarsened after creep. When the stress level decreased to 70 MPa, the grains of the FGHAZ were found to be further refined during creep owing to continuous dynamic recrystallization (subgrains rotation). This was verified by the increase in boundary length featuring random misorientation angles after creep. Recrystallized microstructure was only observed for the FGHAZ of welded joints after creep, but not for the Ac3 heat-affected zone (HAZ) simulated samples which exhibited homogeneous microstructure even at the low applied stress of 50 MPa. In high stress regime the creep strength of the welded joints was almost the same as that of Gr.92 steel owing to the mechanical constraint originating from the heterogeneous creep property of welds. In low stress regime, the creep strength of the welded joint was inferior to that of Gr.92 steel and approached that of the Ac3 HAZ simulated sample as the applied stress decreased. This was caused by the relaxation of the constraint owing to grain boundary sliding. Recrystallization was regarded as a sign of relaxation of constraint and deterioration of creep property for high-Cr heat-resistant steel welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

(adapted from Ref. [20] with permission) (Color figure online)

Fig. 15

Similar content being viewed by others

References

  1. R. Blum, and R.W. Vanstone: Proc. 6th Inter. Charles Parsons Turbine Conf. Dublin, Ireland, 2003. pp. 489–510.

  2. H.K. Bhadeshia, ISIJ Inter., 2001, Vol.41, pp.626-640.

    Article  Google Scholar 

  3. D. Rojas, J. Garcia, O. Prat, G.Sauthoff, A.R.Kaysser-Pyzalla, Mater. Sci. Eng. A, 2011, Vol.528, pp.5164-5176.

    Article  Google Scholar 

  4. K.Sawada, K.Kubo, F.Abe, Mater. Sci. Eng. A, 2001, Vol.319, pp.784-787.

    Article  Google Scholar 

  5. F.Abe, Curr. Opin. Solid State Mater. Sci., 2004, Vol.8, pp.305-311.

    Article  Google Scholar 

  6. F.Abe, Metall. Mater. Trans. A, 2005, Vol.6, pp.321-332.

    Article  Google Scholar 

  7. K. Maruyama, K.Sawada, J. Koike, ISIJ Inter., 2001 Vol. 41, pp.641-653.

    Article  Google Scholar 

  8. D.J. Abson, J.S. Rothwell, Inter. Mater. Rev., 2013, Vol. 58, pp. 437-473.

    Article  Google Scholar 

  9. H. Hirata and K. Ogawa, Welding Inter. 2005, Vol. 19 pp.109-117.

    Article  Google Scholar 

  10. H. Hongo, M. Tabuchi and T. Watanabe, Metall. Mater. Trans. A, 2012, Vol.43, pp.1163-1173.

    Article  Google Scholar 

  11. Y. Li, H. Hongo, M. Tabuchi, Y. Takahashi and Y. Monma, Inter. J. Pressure Vessels & Piping, 2009, Vol.86 pp.585-592

    Article  Google Scholar 

  12. F. Abe, M. Tabuchi, S. Tsukamoto and T. Shirane, Inter. J. Pressure Vessels and Piping, 2010, Vol.87, pp.598-604.

    Article  Google Scholar 

  13. J.A. Francis, W. Muzur and H. K. D. H. Bhadeshia, Mater. Sci. Technol., 2006, Vol. 22, pp. 1387-1395.

    Article  Google Scholar 

  14. F. Abe and M. Tabuchi, Sci. Tech. Welding Joining, 2004, Vol. 19, pp.22-29.

    Article  Google Scholar 

  15. D. Li, K. Shinozaki, H. Kuroki, H. Harada and K. Ohishi, Sci. Tech. Welding Joining, 2003, Vol. 8, pp.296-302.

    Article  Google Scholar 

  16. D. Li, K. Shinozaki, H. Harada and K. Ohishi, Metall. Mater. Trans. A, 2005, Vol. 36, pp.107-115.

    Article  Google Scholar 

  17. Y. Liu, S. Tsukamoto, T. Shirane and F. Abe, Metall. Mater. Trans. A, 2013, Vol. 44, pp.4626-4633.

    Article  Google Scholar 

  18. Y. Liu, S.Tsukamoto, K. Sawada and F. Abe, Metall. Mater. Trans. A, 2014, Vol.45, pp.1306-1314.

    Article  Google Scholar 

  19. M.Tabuchi, A. T. Yikobori Jr., R. Sugiura, M.Yatomi, A.Fuji, K.Kobayashi, Eng. Frac. Mech., 2010 Vol.77, pp.3066-3076.

    Article  Google Scholar 

  20. M. Yaguchi, T. Matsumura, and K. Hoshino: Proc. ASME 2012 Pressure Vessels & Piping Conf. Toronto, Canada, 2012. pp. 1–10.

  21. S.Gourdet, F.Montheillet, Acta Mater., 2003, Vol.51, pp.2685-2699.

    Article  Google Scholar 

  22. H.Gudmundsson, D.Brooks and J.A. Wert, Acta Metall. Mater., 1991, Vol.39, pp.19-35.

    Article  Google Scholar 

  23. M.T. Lyttle and J.A. Wert, J. Mater. Sci., 1994, Vol.29, pp.3342-3350.

    Article  Google Scholar 

  24. S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo and M. Tabuchi, Int. J. Press. Vess. Pip., 2003,Vol. 80, pp.405–413.

    Article  Google Scholar 

  25. D. Li, K. Shinozaki and H. Kuroki, Mater. Sci. Technol., 2003, Vol.19 (9), pp.1253–1260.

    Article  Google Scholar 

  26. S.T. Kimmins and D.J. Smith, J. Strain Anal., 1998, Vol.33, pp.195-206.

    Article  Google Scholar 

  27. H.Hongo, M. Tabuchi, Y. Liu and S. Tsukamoto, J. Soc. Mater. Sci. Japan, 2013, Vol.41, pp. 75-81.

    Article  Google Scholar 

Download references

Acknowledgment

A part of this work was carried out by using the facility of NIMS TEM station. The authors would like to thank Ms. Nakayama for preparing TEM samples and Professor Kaneaki Tsuzaki for the helpful and instructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 24, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tsukamoto, S., Hongo, H. et al. Microstructure Evolution of Fine-Grained Heat-Affected Zone of Gr.92 Steel Welded Joint During Creep. Metall Mater Trans A 50, 3080–3090 (2019). https://doi.org/10.1007/s11661-019-05245-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05245-6

Navigation