Skip to main content
Log in

Modeling of the Dynamic Recrystallization Kinetics of a Continuous Casting Slab Under Heavy Reduction

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Heavy reduction (HR) is used to implement a large reduction amount to improve the internal quality and refine the microstructure of continuous casting billets with large section sizes. In this paper, microstructural evolution and dynamic recrystallization (DRX) kinetic models for continuous casting slabs under HR were investigated for an experimental temperature range from [1173 K to 1573 K (900 °C) to (1300 °C)] and strain rates of 0.001 to 0.1 s−1. Based on the experimental data, various DRX kinetics models for a continuous casting slab as functions of the strain rate, strain, initial austenite grain size, and temperature were established to predict DRX-induced softening behaviors. A comparison of the new modified model, with Laasraoui and Jonas’s model, the modified Yoda’s model, and Liu’s model, revealed that the new modified model is the most suitable model for a continuous casting slab under HR. Based on this research, constitutive models with the characteristics of DRX and dynamic recovery (DRV) were established to predict the flow stress curve with the parameters of the strain rate (\( \dot{\varepsilon } \)), deformation temperature (T), and the initial austenite grain size (d0). Moreover, the microstructural evolution of a tested slab after hot compression tests was investigated by optical microscopy and a DRX grain size model under different deformation conditions was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

HR:

Heavy reduction

SR:

Soft reduction

DRX:

Dynamic recrystallization

DRV:

Dynamic recovery

WH:

Work hardening

Z:

Zener–Hollomon parameter \( \left(Z = \dot{\varepsilon }\exp \left( {\frac{Q}{\text{RT}}} \right)\right) \)

\( \theta \) :

WH rate is the derivative of flow stress curves (\( \theta = {\text{d}}\sigma /{\text{d}}\varepsilon \))

\( \varepsilon_{\text{p}} \), \( \varepsilon_{\text{c}} \) :

Peak strain and critical strain, MPa

\( \varepsilon^{*} \) :

Strain when the velocity of DRX is maximum

\( \varepsilon_{0.5} \) :

Strain for 50 pct dynamic recrystallization

\( \sigma_{\text{DRV}} \), \( \sigma_{\text{DRX}} \) :

The flow stress if the DRV and DRX is the main softening mechanism

Ω:

Which is dependent on the deformation temperature and the strain rate, is the coefficient of DRV

D DRX :

Austenite grain size when the dynamic recrystallization occurs completely

\( \sigma_{\text{p}} \), \( \sigma_{\text{c}} \), \( \sigma_{0} \), \( \sigma_{\text{s}} \) and \( \sigma_{\text{ss}} \) :

Peak stress, critical stress, yield stress, saturation stress, and steady-state stress, MPa

\( \dot{\varepsilon } \) :

Strain rate, s−1

T:

Temperature, K

d 0 :

Initial austenite grain size, μm

σ :

Flow stress, MPa

Q:

Deformation activation energy, J mol−1

References

  1. C. Ji, Z.L. Wang, C.H. Wu and M.Y. Zhu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1-16.

    Google Scholar 

  2. C. Ji, C.H. Wu and M.Y. Zhu: JOM, 2016, vol. 68, pp. 3107-15.

    Article  Google Scholar 

  3. Q.P. Dong, J.M. Zhang, B. Wang and X.K. Zhao: J. Mater. Process. Technol, 2016, vol. 238, pp. 81-8.

    Article  CAS  Google Scholar 

  4. Z.G. Xu, X.H. Wang and M. Jiang: Steel Res. Int., 2017, vol. 88, pp. 231-42.

    CAS  Google Scholar 

  5. Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X. M. Chen and M.S. Chen: Mater. Sci. Eng., A, 2015, vol. 626, pp. 432-40.

    Article  CAS  Google Scholar 

  6. Y.W. Xu, D. Tang, Y. Song and X.G. Pan: Mater. Des., 2012, vol. 39, pp. 168-74.

    Article  CAS  Google Scholar 

  7. A. Momeni, K. Dehghani, H. Keshmiri and G.R. Ebrahimi: Mater. Sci. Eng., A, 2010, vol. 527, pp. 1605-11.

    Article  Google Scholar 

  8. S. Mandal, A.K. Bhaduri and V.S. Sarma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1062-72.

    Article  Google Scholar 

  9. N. Mortazavi, N. Bonora, A. Ruggiero and M.H. Colliander: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2555-9.

    Article  Google Scholar 

  10. S. Serajzadeh: Modell. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 1185-200.

    Article  CAS  Google Scholar 

  11. A.I. Fernández, P, Uranga, B, López and J.M. Rodriguez-Ibabe: Mater. Sci. Eng., A, 2003, vol. 361, pp. 367-76.

    Article  Google Scholar 

  12. X. Quelennec and J.J. Jonas: ISIJ Int., 2012, vol. 52, pp. 1145-52.

    Article  CAS  Google Scholar 

  13. A. Momeni, S.M. Abbas, M. Morakabati, H. Badri and X. Wang: Mater. Sci. Eng., A, 2014, vol. 615, pp. 51-60.

    Article  CAS  Google Scholar 

  14. G.R. Ebrahimi, H. Keshmiri, A.R. Maldar and A. Momeni: J. Mater. Sci. Technol., 2012, vol. 28, pp. 467-73.

    Article  CAS  Google Scholar 

  15. X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang and H. Min: Mater. Des., 2014, vol. 57, pp. 568-77.

    Article  CAS  Google Scholar 

  16. A.N. Kolmogorov: Izv. Akad. Nauk. SSSR., 1937, vol. 3, pp. 355-59.

    Google Scholar 

  17. W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Min.Metall. Engrs., 1939, vol. 135, pp. 416.

    Google Scholar 

  18. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103.

    Article  CAS  Google Scholar 

  19. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212.

    Article  CAS  Google Scholar 

  20. M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177.

    Article  CAS  Google Scholar 

  21. C.M. Sellars and J.A. Whiteman: Met. Sci., 1979, vol. 13, pp. 187-94.

    Article  CAS  Google Scholar 

  22. C.M. Sellars: Mater. Sci. Technol., 1990, vol. 6, pp. 1072-81.

    Article  CAS  Google Scholar 

  23. D.X. Wen, Y.C. Lin and Y. Zhou: Vacuum, 2017, vol. 141, pp. 316-27.

    Article  CAS  Google Scholar 

  24. G.Z. Quan, D.S.Wu, G.C. Luo, Y.F. Xia, J. Zhou, Q. Liu and L. Gao: Mater. Sci. Eng., A, 2014, vol. 589, pp. 22-33.

    Google Scholar 

  25. H. Yada and T. Senuma: J. Jpn. Soc. Technol. Plast., 1986, vol. 27, pp. 34.

    Google Scholar 

  26. S.I. Kim, Y. Lee, D.L. Lee and Y.C. Yoo: Mater. Sci. Eng., A, 2003, vol. 355, pp. 384-93.

    Article  Google Scholar 

  27. A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 151-60.

    Article  CAS  Google Scholar 

  28. X.K. Zhao, J.M. Zhang, S.W. Lei and Y.N. Wang: Steel Res. Int., 2013, vol. 85, pp. 811-23.

    Article  Google Scholar 

  29. M.N. Gong, H.J. Li, T.X. Li, B. Wang, and Z.D. Wang: Steel Res. Int., 2018, vol. 89, art. no. 1800025.

  30. C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22-32.

    Article  Google Scholar 

  31. C.M. Sellars and W.M. Tegart: Acta Metall., 1966, vol. 14, pp. 1136-38.

    Article  CAS  Google Scholar 

  32. H.J. Mcqueen, S. Yue, N.D. Ryan and E. Fry: J. Mater. Process. Technol., 1995, vol. 53, pp. 293-310.

    Article  Google Scholar 

  33. Y. Han, H. Wu, W. Zhang, D.N. Zou, G.W. Liu and G.J. Qiao: Mater. Des., 2015, vol. 69, pp. 230-40.

    Article  CAS  Google Scholar 

  34. S. Saadatkia and H. Mirzadeh, and J.M. Cabrera: Mater. Sci. Eng., A, 2015, vol. A636, pp. 196-202.

    Article  CAS  Google Scholar 

  35. H.L. Wei and G.Q. Liu: Mater. Des., 2014, vol. 56, pp. 437-44.

    Article  CAS  Google Scholar 

  36. M. Shaban and B. Eghbali: Mater. Sci. Eng., A, 2010, vol. 527, pp. 4320-25.

    Article  Google Scholar 

  37. Z.X. Xie, Q.Y. Liu, J.H. Yang and G.Y. Gan: J. Iron Steel Res., 2009, vol. 21, pp. 33-6 (in Chinese).

    CAS  Google Scholar 

  38. S.L. Zhu, H.Z. Cao, J.S. Ye, W.H. Hu, and G.Q. Zheng: J. Iron Steel Res. Int., 2015, vol. 22, pp. 264-71.

    Article  Google Scholar 

  39. E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 692-700.

    Article  CAS  Google Scholar 

  40. N. D. Ryan and H. J. McQueen: Can. Metall. Q., 1990, vol. 29, pp. 147.

    Article  CAS  Google Scholar 

  41. A. Yanagida and J. Yanagimoto: J. Mater. Process. Technol., 2004, vol. 151, pp. 33-8.

    Article  CAS  Google Scholar 

  42. Y.C. Lin, M.S. Chen and J. Zhang: Mech. Res. Commun., 2008, vol. 35, pp. 142-50.

    Article  Google Scholar 

  43. A. Najafizadeh and J.J. Jonas: ISIJ Int., 2006, vol. 46, pp. 1679-84.

    Article  CAS  Google Scholar 

  44. M. Wahabi, J.M. Cabrera and J.M. Prado: Mater. Sci. Eng., A, 2003, vol. 343, pp. 116-25.

    Article  Google Scholar 

  45. L.X. Kong, P.D. Hodgson and B. Wang: J. Mater. Process. Technol., 1999, vol. 90, pp. 44-50.

    Article  Google Scholar 

  46. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu: J. Mater. Sci. Technol., 2011, vol. 27, pp. 913-19.

    Article  CAS  Google Scholar 

  47. F. Kocks and H. Mecking: Acta Metall., 1981, vol. 29, pp. 1865-75.

    Article  Google Scholar 

  48. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57-70.

    Article  Google Scholar 

  49. Y. Bergström: Mater. Sci. Eng., 1970, vol. 5, pp. 193-200.

    Article  Google Scholar 

  50. S. Serajzadeh and A.K. Taheri: Mech. Res. Commun., 2003, vol. 30, pp. 87-93.

    Article  Google Scholar 

  51. R. Kopp, M.L. Cao and M.D. Souza: in Proceedings of the Second International Conference on Technology of Plasticity, 1987, pp. 1129–34.

  52. J. Liu, Z. Cui and L. Ruan: Mater. Sci. Eng., A, 2011, vol. 529, pp. 300-10.

    Article  CAS  Google Scholar 

  53. V. Torabinejad, A. Zarei-Hanzaki, and S. Moemeni: Mater. Manuf. Process., 2012, vol. 28, pp. 36-41.

    Article  CAS  Google Scholar 

  54. D.Z. Li, Y.H. Wei, C.Y. Liu, and L.F. Hou: Steel Res. Int., 2013, vol. 84, pp. 740-50.

    Article  CAS  Google Scholar 

  55. Y.C. Lin, Y.X. Lin, G. Liu, M.S. Chen and Y.C. Huang: J. Mater. Eng. Perform., 2015, vol. 24, pp. 221-8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The current study was financially supported by the National Natural Science Foundation of China under Grant Nos. 51474058 and U1708259; the Program for Liaoning Excellent Talents in University (LJQ2015036); and the Fundamental Research Funds for the Central Universities of China (N172504024). Special thanks are due to the cooperating company for industrial trials and application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ji.

Additional information

Manuscript submitted May 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Ji, C. & Zhu, M. Modeling of the Dynamic Recrystallization Kinetics of a Continuous Casting Slab Under Heavy Reduction. Metall Mater Trans A 50, 357–376 (2019). https://doi.org/10.1007/s11661-018-5005-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5005-5

Navigation