Skip to main content
Log in

Decohesion Energy of \(\Sigma 5(012)\) Grain Boundaries in Ni as Function of Hydrogen Content

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Degradation due to hydrogen embrittlement (HE) is initiated at the nanoscale, and the development of a predictive understanding of HE will have to consider the range all the way from atomic to macro scale. Density functional theory (DFT) can be used to calculate the effect of hydrogen in metals on the atomic scale. It is, however, limited to small models consisting of \(\sim 1000\) atoms, which puts the relevance for real-life scenarios into question. In the current study, the effect of model size is explored for two grain boundary (GB) systems, \(\Sigma 3[110](111)\) and \(\Sigma 5[100](012)\). For the latter, the preferred sites for H occupation and the sequence in which sites are filled upon increasing H contents are investigated, and decohesion energies are calculated as function of H content. Emphasis is laid on identifying the most physical model for these studies, by evaluating effects of model size and structural relaxation procedures. It is found that the decohesion energy does not decrease linearly with H content and has to be calculated explicitly for full H coverage to find out how much H absorption weakens the GB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Dadfarnia, A. Nagao, S. Wang, M. L. Martin, B. P. Somerday, P. Sofronis: Int. J. Fract., 2015, vol. 196, pp. 223–43.

    Article  CAS  Google Scholar 

  2. E. D. Reese, W. Von Bestenbostel, T. Sebald, G. Paronis, D. Vanelli, Y. Mueller: Jom, 2014, vol. 66, pp. 1368–76.

    Article  CAS  Google Scholar 

  3. T. Watanabe: J. Phys. Colloq., 1985, vol. 46, pp. c4–555–c4566.

    Article  Google Scholar 

  4. L. Lim, T. Watanabe: Acta Metallurg., 1990, vol. 38, pp. 2507–16.

    Article  CAS  Google Scholar 

  5. A. Pundt, and R. Kirchheim: Ann. Rev. Mater. Res., 2006, vol. 36, pp. 555–608, 1531–7331.

  6. R. Kirchheim: Acta Mater., 2007, vol. 55, pp. 5129–38.

    Article  CAS  Google Scholar 

  7. M. L. Martin, B. P. Somerday, R. O. Ritchie, P. Sofronis, I. M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.

    Article  CAS  Google Scholar 

  8. M. Seita, J. P. Hanson, S. Gradecak, M. J. Demkowicz: Nature Comm., 2015, vol. 6, pp. 6164.

    Article  CAS  Google Scholar 

  9. I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, K. E. Nygren: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1085–103.

    Article  Google Scholar 

  10. J. Song, W. A. Curtin: Acta Mater., 2011, vol. 59, pp. 1557–69.

    Article  CAS  Google Scholar 

  11. Y. Takahashi, H. Kondo, R. Asano, S. Arai, K. Higuchi, Y. Yamamoto, S. Muto, N. Tanaka: Mater. Sci. Eng. A, 2016, vol. 661, pp. 211–6.

    Article  CAS  Google Scholar 

  12. C. Park, N. Kang, S. Liu, Corros. Sci., 2017, vol. 128, pp. 33–41.

    Article  CAS  Google Scholar 

  13. J. P. Hanson, A. Bagri, J. Lind, P. Kenesei, R. M. Suter, S. Gradeak, M. J. Muto, Nat. Commun., 2018, vol. 9, pp. 3386.

    Article  Google Scholar 

  14. V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–81.

    Article  CAS  Google Scholar 

  15. S. Bechtle, M. Kumar, B. P. Somerday, M. E. Launey, R. O. Ritchie: Acta Mater., 2009, vol. 57, pp. 4148–57.

    Article  CAS  Google Scholar 

  16. S. Jothi, T. N. Croft, L. Wright, A. Turnbull, S. G. R. Brown: Int. J. Hydrogen Energ., 2015, vol. 40, pp. 15105–23.

    Article  CAS  Google Scholar 

  17. S. M. Myers, M. I. Baskes, H. K. Birnbaum, J. W. Corbett, G. G. Deleo, S. K. Estreicher, E. E. Haller, P. Jena, N. M. Johnson, R. Kirchheim, S. J. Pearton, M. J. Stavola: Rev. Mod. Phys., 1992, vol. 64, pp. 559–617.

    Article  CAS  Google Scholar 

  18. J. E. Angelo, N. R. Moody, M. I. Baskes: Model. Simul. Mater. Sci. Eng., 1995, vol. 3, pp. 289–307.

    Article  CAS  Google Scholar 

  19. D. Connetable, Y. Wang, D. Tanguy: J. Alloys Compd., 2014, vol. 614, pp. 211–20.

    Article  CAS  Google Scholar 

  20. D. Tanguy, Y. Wang, D. Connetable: Acta Mater., 2014, vol. 78, pp. 135–43.

    Article  CAS  Google Scholar 

  21. Y. Wang, D. Connetable, D. Tanguy: Acta Mater., 2016, vol. 103, pp. 334–40.

    Article  CAS  Google Scholar 

  22. J. von Pezold, L. Lymperakis, J. Neugebeauer: Acta Mater., 2011, vol. 59, pp. 2969–80.

    Article  Google Scholar 

  23. D. Di Stefano, M. Mrovec, C. Elsässer: Acta Mater., 2015, vol. 98, pp. 306–12.

    Article  Google Scholar 

  24. X. Zhou, D. Marchand, D. L. McDowell, T. Zhu, J. Song: Phys. Rev. Lett., 2016, vol. 116, pp. 075502.

    Article  Google Scholar 

  25. D. L. Olmsted, S. M. Foiles, E. A. Holm: Acta Mater., 2009, vol. 57, pp. 3694–703.

    Article  CAS  Google Scholar 

  26. S. Dai, Y. Xiang, D. J. Srolovitz: Acta Mater., 2014, vol. 69, pp. 162–74.

    Article  CAS  Google Scholar 

  27. W. T. Geng, A. J. Freeman, R. Wu, C. B. Geller, J. E. Raynolds: Phys. Rev. B, 1999, vol. 60, pp. 7149–55.

    Article  CAS  Google Scholar 

  28. J. P. Perdew, J. A. Chevary, S. H.Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87.

    Article  CAS  Google Scholar 

  29. G. Kresse, J. Furthmüller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.

    Article  CAS  Google Scholar 

  30. G. Kresse, J. Furthmüller: Comp Mater Sci, 1996, vol. 6, pp. 15–50.

    Article  CAS  Google Scholar 

  31. D. E. Jiang, E. Carter: Acta Mater., 2004, vol. 52, pp. 4801–7.

    Article  CAS  Google Scholar 

  32. A. Alvaro, I. J. T. Jensen, N. Kheradmand, O. M. Løvvik, V. Olden: Int. J. Hydrogen Energy, 2015, vol. 40, pp. 16892–900.

    Article  CAS  Google Scholar 

  33. M. Yamaguchi, M. Shiga, H. Kaburaki: Science, 2005, vol. 307, pp. 393–7.

    Article  CAS  Google Scholar 

  34. Y. A. Du, L. Ismer, J. Rogal, T. Hickel, J. Neugebauer, R. Drautz: Phys. Rev. B, 2011, vol. 84, pp. 144121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. T. Jensen.

Additional information

Manuscript submitted July 30, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, I.J.T., Olden, V. & Løvvik, O.M. Decohesion Energy of \(\Sigma 5(012)\) Grain Boundaries in Ni as Function of Hydrogen Content. Metall Mater Trans A 50, 451–456 (2019). https://doi.org/10.1007/s11661-018-4982-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4982-8

Navigation