Skip to main content
Log in

Microstructural and Finite Element Analysis of Creep Failure in Dissimilar Weldment Between 9Cr and 2.25Cr Heat-Resistant Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructural analysis and the creep failure mechanism of dissimilar weldment between ASTM A213 T92 (9Cr1.5W0.5MoVNbTi) and T22 (2.25Cr1Mo) heat-resistant steels are reported. The low-Cr part that has high carbon activity shows a depletion of C during postweld heat treatment. In particular, the soft carbon-depleted zone (CDZ) with the lowest hardness is surrounded by strong weld metal (WM) and the T22 heat-affected zone (HAZ). Load-displacement curves obtained by nanoindentation experiments are used to extract true stress–strain curves of the WM, the CDZ, and the T22 HAZ by using finite element methods (FEMs). Because of the mechanical properties of each region, the soft CDZ confined between harder regions is exposed to multiaxial stress. Therefore, creep voids actively form and coalesce in this CDZ and lead to macroscopic brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. R. Viswanathan, K. Coleman, and U. Rao: Int. J. Pres. Ves. Pip., 2006, vol. 83, pp. 778–83.

    Article  CAS  Google Scholar 

  2. F. Abe, T.U. Kern, and R. Viswanathan: Creep Resistant Steels, Woodhead Publishing Ltd., Cambridge, United Kingdom, 2008.

    Book  Google Scholar 

  3. S.K. Albert, T.P.S Gill, A.K. Tyagi, S.L. Mannan, S.D. Kulkarni, and P. Rodriguez: Weld. J., 1997, vol. 76, pp. 135–42.

    Google Scholar 

  4. C. Sucha, V.T. Paul, A.L.E. Terrance, S. Saroja, and M. Vijayalakshmi: Weld. J., 2006, vol. 85, pp. 71–80.

    Google Scholar 

  5. R. Foret, B. Zlamal, and J. Sopousek: Weld. J., 2006, vol. 85, pp. 211–17.

    Google Scholar 

  6. H. Cerjak, P. Hofer, and B. Schaffernak: ISIJ Int., 1999, vol. 39, pp. 874–88.

    Article  CAS  Google Scholar 

  7. R. Anand, C. Sudha, S. Saroja, and M .Vijayalakshmi: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2156–70.

    Article  Google Scholar 

  8. C.D. Lundin, K.K. Khan, and D. Yang: Proc. Conf. Recent Trends in Welding Science and Technology, Gatlinburg, TN, May 14–18, 1989, ASM International, Materials Park, OH, 1990, pp. 291–96.

  9. S.J. Brett: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 41–45.

    Article  CAS  Google Scholar 

  10. T. Helander, H.C.M. Andersson, and M. Oskarsson: Mater. High Temp., 2000, vol. 17, pp. 389–96.

    CAS  Google Scholar 

  11. F. Abe: Sci. Technol. Adv. Mater., 2008, vol. 9, pp. 1–15.

    Article  Google Scholar 

  12. M.-Y. Kim, S.-C. Kwak, I.-S. Choi, Y.-K. Lee, J.-Y. Suh, E. Fleury, W.-S. Jung, and T.-H. Son: Mater. Charact., 2014, vol. 97, pp. 161–68.

    Article  CAS  Google Scholar 

  13. MatNavi, NIMS Materials Database (online), http://smds.nims.go.jp/creep/index_en.html.

  14. C.W. Hong, Y.-U. Heo, N.H. Heo, and S.-J. Kim: Mater. Charact., 2017, vol. 124, pp. 192–205.

    Article  CAS  Google Scholar 

  15. H.J. Sung, N.H. Heo, and S.-J. Kim: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1975–83.

    Article  Google Scholar 

  16. K.D. Bouzakis, N. Michailidis, and G. Erkens: Surf. Coat. Technol., 2001, vols. 142–144, pp. 102–09.

    Article  Google Scholar 

  17. H.J. Jeong, E.Y. Yoon, D.J. Lee, N.J. Kim, S. Lee, and H.S. Kim: J. Mater. Sci., 2012, vol. 47, pp. 7828–84.

    Article  CAS  Google Scholar 

  18. M. Yaguchi, T. Ogata, and T. Sakai: Int. J. Pres. Ves. Pip., 2013, vol. 87, pp. 357–64.

    Article  Google Scholar 

  19. P. Auerkari, S. Holmström, J. Veivo, and J. Salonen: Int. J. Pres. Ves. Pip., 2007, vol. 84, pp. 69–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Korea Evaluation Institute of Industrial Technology (Project No. 10048576) for funding and Dr. Tae-Eun Hong, Ms. Mi Rang Byeon, and Ms. Min Ji Kang (Korea Basic Science Institute) for Nano-SIMS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Joon Kim.

Additional information

Manuscript submitted October 24, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, H.J., Moon, J.H., Jang, M.J. et al. Microstructural and Finite Element Analysis of Creep Failure in Dissimilar Weldment Between 9Cr and 2.25Cr Heat-Resistant Steels. Metall Mater Trans A 49, 5323–5332 (2018). https://doi.org/10.1007/s11661-018-4859-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4859-x

Navigation