Skip to main content
Log in

Microstructure–Property Correlation in Low-Si Steel Processed Through Quenching and Nonisothermal Partitioning

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present investigation, an attempt has been made to stabilize austenite by carbon partitioning through quenching and nonisothermal partitioning (Q&P) technique. This will eliminate the need for additional heat-treatment facility to perform isothermal partitioning or tempering process. The presence of retained austenite in the microstructure helps in increasing the toughness, which in turn is expected to improve the abrasion resistance of steels. The carbon partitioning from different quench temperatures has been performed on two different alloys, with low-Si content (0.5 wt pct), in a salt bath furnace atmosphere, the cooling profile of which closely resembles the industrially produced hot-rolled coil cooling. The results show that the stabilization of retained austenite is possible and gives rise to increased work hardening, better impact toughness and abrasive wear loss comparable to that of a fully martensitic microstructure. In contrast, tempered martensite exhibits better wear properties at the expense of impact toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater, 2003, vol. 51, pp. 2611-22.

    Article  Google Scholar 

  2. P.C. Wolfram: MS Thesis,Colorado School of Mines, Golden, Co, 2013.

  3. M.C. Somani, D.A. Porter, L.P.Karjalainen, P.P. Suikkanen, and R.D.K. Misra: Mater. Today 2S, 2015, S631-34.

    Article  Google Scholar 

  4. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scr. Mater, 2013, vol. 68, pp. 321-24.

    Article  Google Scholar 

  5. N. Maheswari, S.G. Chowdhury, K.C.H. Kumar, and S. Sankaran: Mater. Sci. Eng. A, 2014, vol. 600, pp. 12-20.

    Article  Google Scholar 

  6. Y. Toji, G. Miyamoto, and D. Raabe: Acta Mater, 2015, vol. 86, pp. 137-47.

    Article  Google Scholar 

  7. X. Tan, Y. Xu, X. Yang, Z. Liu, and D. Wu: Mater. Sci. Eng. A, 2014, vol. 594, pp. 149-60.

    Article  Google Scholar 

  8. M.K. Abian, A.Z. Hanzaki, H.R. Abedi, and S.H. Manesh: Mater. Sci. Eng. A, 2016, vol. 651, pp. 233-40.

    Article  Google Scholar 

  9. E.P. Bagliani, M.J. Santofimia, L. Zhao, J. Sietsma, and E. Anelli: Mater. Sci. Eng. A, 2013, vol. 559, pp. 486-95.

    Article  Google Scholar 

  10. S. Yan, X. Liu, W.J. Liu, H. Lan, and H. Wu: Mater. Sci. Eng. A, 2015, vol. 620, pp. 58-66.

    Article  Google Scholar 

  11. G.A. Thomas: MS Thesis, Colorado School of Mines, Golden, Co, 2009.

  12. G.A. Thomas, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3652-59.

    Article  Google Scholar 

  13. X.D. Tan, Y.B. Xu, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, and D. Wu: Mater. Charact., 2015, vol. 104, pp. 23-30.

    Article  Google Scholar 

  14. M.J. Neale, and M. Gee: Guide to Wear Problems and Testing for Industry, William Andrew Inc., Norwich 2001.

    Google Scholar 

  15. H. Mohrbacher: Molybdenum in steels for abrasion resistant applications, NiobelConbvba, Schilde 2014

    Google Scholar 

  16. K. Wasiak, E. Skołek, and W.A. Świątnicki: Metal 2014: 23rd International Conference on Metallurgy and Materials, May 21st–23rd 2014, Brno, Czech Republic, EU.

  17. S.G. Liu, S.S. Dong, F. Yang, L. Li, B. Hu, F.H. Xiao, Q. Chen, and H.S. Liu: Mater. Des., 2014, vol. 56, pp. 37-43.

    Article  Google Scholar 

  18. K. Jian, W. Chao, L. Yunjie, Y. Guo, and W. Guodong, J. Wuhan Uni. Tech. Mater. Sci. Ed., 2016, vol. 31, pp. 178-85

    Article  Google Scholar 

  19. G.R. Speich: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 2553-64.

    Google Scholar 

  20. A.J. Clarke, M.K. Miller, R.D. Field, D.R. Coughlin, P.J. Gibbs, K.D. Clarke, D.J. Alexander, K.A. Powers, P.A. Papin, and G. Krauss: Acta Mater, 2014, vol. 77, pp. 17-27.

    Article  Google Scholar 

  21. E. De Moor, S. Lacroix, L. Samek, J. Penning, and J.G. Speer: The 3rd International Conference on Advanced Structural Steels, Gyeongju, Korea, August 22–24, 2006.

  22. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285-03.

    Article  Google Scholar 

  23. L. Suarez, J. Schneider, and Y. Houbaert: Defect and Diffusion Forum, 2008, vol. 273-276, pp. 655-60.

    Google Scholar 

  24. A. Grajcar: J. Therm. Anal. Calorim., 2014, vol. 118, pp. 1011-20.

    Article  Google Scholar 

  25. E. Abbasi,and W.M.Rainforth: Mater. Sci. Technol., 2017, vol. 33, pp. 311-20.

    Article  Google Scholar 

  26. L. Li, H.Yu, C. Song, J. Lu, J. Hu, and T. Zhou: Steel Res. Int., 2017, vol. 88 (5), pp. 1-9.

    Article  Google Scholar 

  27. N. Zhong, Y. Wang, K. Zhang, and Y H. Rong: Steel Res. Int., 2011, vol. 82, pp. 1332-37.

    Article  Google Scholar 

  28. Y. Wang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Technol., 2013, vol. 29, pp. 451-57.

    Article  Google Scholar 

  29. Ana LuizaAzevedo de Araújo: MS Thesis, Colorado School of Mines, Golden, Co, 2016.

  30. D.K. Matlock, V.E. Bräutigam, and J.G. Speer: Materials Science Forum, 203, vol. 426-432, pp 1089-94.

    Article  Google Scholar 

  31. F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, and J. Li: Mater. Sci. Eng. A, 2018, vol. 723, pp. 247-58.

    Article  Google Scholar 

  32. J.G. Speer, A.L. Araujo, D.K. Matlock, and E. De Moor: Mater Sci Forum, 2016, vol. 879, pp 1834-40.

    Article  Google Scholar 

  33. J. Zhang, H. Ding, C. Wang, J. Zhao, and T. Ding: Mater. Sci. Eng. A, 2013, vol. 585, pp. 132-38.

    Article  Google Scholar 

  34. J. Dearden, and H. O’Neill: Trans. Inst. Weld, 1940, vol. 3, pp. 203-14.

    Google Scholar 

  35. K.W. Andrews: J. of the Iron and Steel Inst., 1965, vol. 203, pp. 721-27.

    Google Scholar 

  36. P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S.V.D. Zwaag, and F. Delannay: Mater. Sci. Eng. A, 1999, vol. 273-275, pp. 475-79.

    Article  Google Scholar 

  37. J.G. Speer, F.C. Rizzo, D.K. Matlock, and D.V. Edmonds: J. Mater. Res., 2005, vol. 8, pp. 417-23.

    Article  Google Scholar 

  38. E. De Moor, J. Penning, C. Fojer, A.J. Clarke, and J.G. Speer: Int. Conf. on New Developments in Advanced High-Strength Sheet Steels, Orlando, FL, 2008, pp. 199–07.

  39. A. Sundström, J. Rendón, and M. Olsson: Wear, 2001, vol. 250, pp. 744-54.

    Article  Google Scholar 

  40. A. Sergey, H. Klaus, S. Andreij, Y. Evgenij, M. Youri, and N. Sergey: Iron & Steel Supplement, The Joint Int. Conf. of HSLA Steels and ISUGS, 2005, vol. 40, pp. 759–63.

  41. D.K. Matlock, and J.G. Speer: Mater. Sci. Technol., 2009, vol. 25, pp. 1118-25.

    Article  Google Scholar 

  42. M. Korchynsky: The use of Vanadium in Steel—Proc. of the Vanitec Symposium, Beijing, China, Oct. 2001, pp. 26–35

  43. G. Krauss: Steels: Processing, Structure, and Performance, ASM International, Metals Park, OH, 2005.

    Google Scholar 

  44. N. Ojala, K. Valtonen, V. Heino, M. Kallio, J. Aaltonen, P. Siitonen, and V.T. Kuokkala: Wear, 2014, vol. 317, pp. 225-32.

    Article  Google Scholar 

  45. J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, and G. Krauss: Austenite formation and decomposition, TMS/ISS, Warrendale 2003, pp. 505-22

    Google Scholar 

  46. S.N. Ghali, H.S. El-Faramawy, and M.M. Eissa: J. Minerals Mater. Charact. Eng., 2012, vol. 11, pp. 995-99.

    Google Scholar 

  47. W. Alqhadafi: Master thesis, Luleå University of Technology, 2012.

  48. C.E.I.C. Öhlund, J. Weidow, M. Thuvander, and S.E. Offerman: Iron Steel Inst. Jpn. Int., 2014, vol. 54, No. 12, pp. 2890-99.

    Article  Google Scholar 

  49. B.V.N.Rao: Metall. Trans. A, 1979, vol. 10A, pp. 645-48.

    Article  Google Scholar 

  50. S. Nagakura: J. Phys. Soc. Jpn, 1959, vol. 14, No. 2, pp. 186-95.

    Article  Google Scholar 

  51. K. Zhang, M. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8486-91.

    Article  Google Scholar 

  52. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425-33.

    Article  Google Scholar 

  53. I. Mejía, C. Maldonado, J.A. Benito, J. Jorba, and A. Roca: Mater. Sci. Forum, 2006, vol. 509, pp. 37-42.

    Article  Google Scholar 

  54. H.S. Zhao, W. Li, X. Zhu, X.H. Lu, L. Wang, S. Zhou, and X.J. Jin: Mater.Sci. Eng. A, 2016, vol. 649, pp. 18-26.

    Article  Google Scholar 

  55. X. Huang, W. Liu, Y. Huang, H. Chen, and W. Huang: J. Mater. Processing Technol., 2015, vol. 222, pp. 181-87.

    Article  Google Scholar 

  56. M.M. Wang, J.C. Hell, and C.C. Tasan: Scr. Mater, 2017, vol. 138, pp. 1-5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tata Steel Ltd., Jamshedpur for sponsoring this research. GB, VR, VCS, and SGC wish to thank the Director, CSIR-NML for his kind encouragement and permission to publish this work. CG and SK would like to thank Tata Steel management for allowing them to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chiradeep Ghosh or S. Ghosh Chowdhury.

Additional information

Manuscript submitted January 26, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, G.K., Rajinikanth, V., Ghosh, C. et al. Microstructure–Property Correlation in Low-Si Steel Processed Through Quenching and Nonisothermal Partitioning. Metall Mater Trans A 49, 3501–3514 (2018). https://doi.org/10.1007/s11661-018-4677-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4677-1

Navigation