Skip to main content
Log in

Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. K. Easterling: in Introduction to the Physical Metallurgy of Welding, Butterworth-Heimemann Ltd, Oxford, 1992.

    Google Scholar 

  2. F. Abe, T.U. Kern and R. Viswanathan: in Creep-Resistant Steels, Woodhead Publishing, Cambridge, 2008.

    Book  Google Scholar 

  3. J. Francis, W. Mazur, and H. Bhadeshia: Mater. Sci. Tech., 2006, vol. 22, pp. 1387–95.

    Article  Google Scholar 

  4. S.A. David, J.A. Siefert and Z. Feng: Sci. Technol. Welding J., 2013, vol. 18, pp. 631–51.

    Article  Google Scholar 

  5. P. Mayr: Doctoral thesis, Graz University of Technology, 2007.

  6. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo and T. Tanabe: Int. J. Pres. Ves. Piping, 2006, vol. 83, pp. 63–71.

    Article  Google Scholar 

  7. J. Hald: Int. J. Pres. Ves. Piping, 2008, vol. 85, pp. 30–37.

    Article  Google Scholar 

  8. D. Abson and J. Rothwell: Int. Mater. Rev., 2013, vol. 58, pp. 437–73.

    Article  Google Scholar 

  9. F. Abe: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 5610–25.

    Article  Google Scholar 

  10. S. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo and M. Tabuchi: Int. J. Pres. Ves. Piping, 2003, vol. 80, pp. 405–13.

    Article  Google Scholar 

  11. J. Parker and S. Brett: Int. J. Pres. Ves. Piping, 2013, vol. 111-112, pp. 82-88.

    Article  Google Scholar 

  12. K. Laha, K. Chandravathi, P. Parameswaran, K. Rao and S. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68.

    Article  Google Scholar 

  13. J. Parker: Mater. Sci. Eng. A, 2013, vol. 578, pp. 430–37.

    Article  Google Scholar 

  14. J. Parker and G. Stratford: Int. J. Pres. Ves. Piping, 1996, vol. 68, pp. 135–43.

    Article  Google Scholar 

  15. K. Maruyama, K. Sawada and J. Koike: ISIJ Int., 2001, vol. 41, pp. 641–53.

    Article  Google Scholar 

  16. F. Abe: Sci. Tech. Adv. Mater., 2008, vol. 09, pp. 013002.

    Article  Google Scholar 

  17. Y. Liu, S. Tsukamoto, K. Sawada and F. Abe: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1306–14.

    Article  Google Scholar 

  18. C. Coussement, A. Dhooge, M. de Witte, R. Dobbelaere and E. van der Donckt: Int. J. Pres. Ves. Piping, 1991, vol. 45, pp. 163–78.

    Article  Google Scholar 

  19. M. Sireesha, Shaju K. Albert, and S. Sundaresan: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1495–06.

    Article  Google Scholar 

  20. K.K. Coleman and W. F. Newell: Welding J., 2007, vol. 86, pp. 29–33.

    Google Scholar 

  21. L. Li, B. Silwal and A. Deceuster: Int. J. Pres. Ves. Piping, 2016, vol. 146, pp. 95–103.

    Article  Google Scholar 

  22. Y. Wang, R. Kannan and L. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5680–84.

    Article  Google Scholar 

  23. S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  Google Scholar 

  24. S. Morito, X. Huang, T. Furuhara, T. Maki and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    Article  Google Scholar 

  25. S. Morito, H. Saito, T. Ogawa, T. Furuhara and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91–94.

    Article  Google Scholar 

  26. Y. Wang, R. Kannan, and L. Li: Mater. Charact., 2016, vol. 118, pp. 225–34.

    Article  Google Scholar 

  27. Y. Wang and L. Li: Welding J., 2016, vol. 95, pp. 27–36.

    Google Scholar 

  28. Y. Zhang, P. H. Shipway and F. Boue-Bigne: Sci. Technol. Welding J., 2009, vol. 14, pp. 542–48.

    Article  Google Scholar 

  29. K. Sawada, T. Hara, M. Tabuchi, K. Kimura and K. Kubushiro: Mater. Charact., 2015, vol. 101, pp. 106–13.

    Article  Google Scholar 

  30. G. Kirchner, T. Nishizawa and B. Uhrenius: Metall. Trans., 1973, vol. 4, pp. 167–74.

  31. J. B. Austin and R. H. H. Pierce Jr.: AIME Trans., 1935, vol. 116, pp. 289–308.

    Google Scholar 

Download references

Acknowledgments

This study has been financially sponsored by the U.S. DOE Office of Nuclear Energy’s Nuclear Energy University Programs and the Discovery program of Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors would like to thank Dr. Andrew Deceuster, Dr. Bishal Silwal, and Benjamin Griffiths for conducting the welding experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leijun Li.

Additional information

Manuscript submitted April 14, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kannan, R. & Li, L. Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel. Metall Mater Trans A 49, 1264–1275 (2018). https://doi.org/10.1007/s11661-018-4490-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4490-x

Navigation