Skip to main content

Advertisement

Log in

Development of High-Strength Bulk Ultrafine-Grained Low Carbon Steel Produced by Equal-Channel Angular Pressing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low carbon steel (LCS) workpieces have been deformed by equal-channel angular pressing (ECAP) at a large equivalent strain of 16.8 at room temperature. The mechanisms of microstructural refinement, strengthening, hardening, and fracture behavior are investigated. LCS becomes refined by a sequence of mechanisms of elongation of grains, splitting of elongated grains to bands at low strain, subdivision of bands to cells at intermediate strain, elongation of bands to ribbon grains, and breaking of ribbons to near-equiaxed grains at a high strain level. ECAP of LCS at ε vm = 16.8 refines the material to near-equiaxed grains of size 0.2 µm having a high-angle grain boundary fraction of 82.4 pct and average misorientation angle of 40.8 deg. The ultrafine-grained (UFG) LCS contains a dislocation density of 1.7 × 1015 m2. In the initial passes of ECAP, the yield and tensile strengths increase rapidly due to rapid grain refinement, reduction in domain size, and increase in dislocation density. At high strain levels, strengthening can be attributed to a combination of grain refinement, dissolution of cementite in the ferrite matrix, and increase in misorientation angle. At ε vm = 16.8, the ultimate tensile strength (UTS) reaches >1000 MPa with a consequent drop in ductility to ≈10.6 pct. Reduction in ductility is found to be due to high dislocation density, high stored energy in the matrix, and occurrence of nonequilibrium grain boundaries. The LCS at low equivalent strain fails by ductile fracture. The dimple size and its volume fraction decrease, but their number density and stored energy increase with increasing equivalent strain. Beyond a critical equivalent strain of 9, the material fails by ductile-brittle fracture. At ε vm = 16.8, equal-channel angular pressed UFG LCS fails mainly by cleavage fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  Google Scholar 

  3. K.T. Park and D.H. Shin: Mater. Sci. Eng. A, 2002, vol. 334, pp. 79–86.

    Article  Google Scholar 

  4. R.Z. Valiev and T.G. Langdon: Progr. Mater. Sci., 2006, vol. 51, pp. 881–98.

    Article  Google Scholar 

  5. L.S. Toth and C. Gu: Mater. Charact., 2014, vol. 92, pp. 1–14.

    Article  Google Scholar 

  6. J.T. Wang, C.Z. Xu, Z. Du, G.Z. Qu, and T.G Langdon: Mater. Sci. Eng. A, 2005, 410–411: 312–15.

    Article  Google Scholar 

  7. D.H. Shin, J. Kim, and K.T. Park: Met. Mater. Int., 2001, vol. 7, pp. 431–35.

    Article  Google Scholar 

  8. J.Z. Kraus, M. Fujda, and M. Cieslar: Grain Refinement of Low Carbon Steel by ECAP Severe Plastic Deformation, Nanocon 2011, Brno, Czech Republic, 2011, pp. 1–7.

    Google Scholar 

  9. J.R. Bowen, P.B. Prangnell, and F.J. Humphreys: Mater. Sci. Technol., 2000, vol. 16, pp. 1246–50.

    Article  Google Scholar 

  10. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1525–34.

    Article  Google Scholar 

  11. R. Manna, N.K. Mukhopadhyay, and G.V.S. Sastry: Mater. Sci. Forum, 2012, vol. 135, pp. 702–03.

    Google Scholar 

  12. D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1803–17.

    Article  Google Scholar 

  13. X. Huang, N. Kamikawa, and N. Hansen: J. Mater. Sci., 2010, vol. 45, pp. 4761–69.

    Article  Google Scholar 

  14. 14. D. Verma, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: Trans. IIM, 2017, vol. 70 (4), pp. 917–26.

    Google Scholar 

  15. N. Hansen, X. Huang, and G. Winther: Mater. Sci. Eng. A, 2008, vol. 494, pp. 61–67.

    Article  Google Scholar 

  16. J.R. Weertman: in Nanostructured Materials: Processing, Properties and Applications, C.C. Koch, ed., William Andrews Publishing, Norwich, NY, 2002, pp. 397–418.

  17. P.B. Prangnell, J.R. Bowen, and P.J. Apps: Mater. Sci. Eng. A, 2004, vol. 178, pp. 375–77.

    Google Scholar 

  18. D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45, pp. 3871–86.

    Article  Google Scholar 

  19. J. Cízek, M. Janecek, T. Krajnak, J. Straska, P. Hruska, J. Gubicza, and H.S. Kim: Acta Mater., 2016, vol. 105, pp. 258–72.

    Article  Google Scholar 

  20. Yan Bo, Si-hai Jiao, and Dian-hua Zhang: J. Iron Steel Res. Int., 2016, vol. 23 (2), pp. 160–65.

    Article  Google Scholar 

  21. J. Kim, I. Kim, and D.H. Shin: Scripta Mater., 2001, vol. 45, pp. 421–26.

    Article  Google Scholar 

  22. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–68.

    Article  Google Scholar 

  23. K.T. Park, Y.S. Kim, J.G. Lee, and D.H. Shin: Mater. Sci. Eng. A, 2000, vol. 293, pp. 165–72.

    Article  Google Scholar 

  24. D.H. Shin, S.Y. Han, K.T. Park, Y.S. Kim, and Y.N. Paik: Mater. Trans., 2003, vol. 44 (8), pp. 1630–35.

    Article  Google Scholar 

  25. D.H. Shin, J. Kim, and K.T. Park: Met. Mater. Int., 2001, vol. 7, pp. 431–35.

    Article  Google Scholar 

  26. G.G. Maier, E.G. Astafurova, H.J. Maier, E.V. Naydenkin, G.I. Raab, P.D. Odessky, and S.V. Dobatkin: Mater. Sci. Eng. A, 2013, vol. 58, pp. 104–07.

    Article  Google Scholar 

  27. D.H. Shin and K.T. Park: Mater. Sci. Eng. A, 2005, vol. 299, pp. 410–11.

    Google Scholar 

  28. E.G. Astafurova, G.G. Zakharova, E.V. Naydenkin, S.V. Dobatkin, and G.I. Raab: Phys. Met. Metall., 2010, vol. 110, pp. 260–68.

    Article  Google Scholar 

  29. H. Zhang, X. Cheng, L. Zhang, and B. Bai: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5430–34.

    Article  Google Scholar 

  30. F. Khodabakhshi, M. Kazeminezhad, and A.H. Kokabi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4043–49.

    Article  Google Scholar 

  31. S.S. Hazra, E.V. Pereloma, and A.A. Gazder: Acta Mater., 2011, vol. 59, pp. 4015–29.

    Article  Google Scholar 

  32. R.B. Singh, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1189–1203.

    Article  Google Scholar 

  33. D. Verma, S.A. Pandey, A. Bansal, S. Upadhyay, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna: J. Mater. Eng. Perform., 2016, vol. 12, pp. 5157–66.

    Article  Google Scholar 

  34. G.R. Stibitz: Phys. Rev., 1936, vol. 49, p. 859.

    Article  Google Scholar 

  35. S.S. Hazra, A.A. Gazder, and E.V. Pereloma: Mater. Sci. Eng. A, 2009, vol. 524, pp. 158–67.

    Article  Google Scholar 

  36. A. Borbely, J.H. Driver, and T. Ungar: Acta Mater., 2000, vol. 48, pp. 2005–16.

    Article  Google Scholar 

  37. H.P Klug and L.E. Alexander: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, J. Wiley, New York, NY, 1954, pp. 491–538.

    Google Scholar 

  38. G.K. Williamson and R.E. Smallman: Phil. Mag., 1956, vol. 1, pp. 34–46.

    Article  Google Scholar 

  39. R.E. Smallman and K.H. Westmacott: Phil. Mag., 1957, vol. 2 pp. 669–83.

    Article  Google Scholar 

  40. K. Zhang, I.V. Alexandrov, A.R. Kilmametovz, R.Z. Valiev, and K. Luy: J. Phys. D, 1997, vol. 30, pp. 3008–15.

    Article  Google Scholar 

  41. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Pergamon, New York, NY, 1995, pp. 11–60.

    Google Scholar 

  42. J. Hodowany, G. Ravichandran, A.J. Rosakis, and P. Rosakis: Exp. Mech., 2000, vol. 40, pp. 113–23.

    Article  Google Scholar 

  43. B. Hutchinson: Phil. Trans. R. Soc. London, 1999, vol. 357A, pp. 1471–85.

    Article  Google Scholar 

  44. F.J. Humphreys and M.G. Ardakani: Acta Metall. Mater., 1994, vol. 42, pp. 749–61.

    Article  Google Scholar 

  45. K. Hono, M. Omuma, and M. Murayama: Scripta Mater., 2001, vol. 44, pp. 977–83.

    Article  Google Scholar 

  46. Y. Ivanisenko, R.Z. Valiev, W. Lojkowski, A. Grob, and H.J. Fecht: Ultrafine Grained Materials II, TMS Annual Meeting, Seattle, WA, 2002, pp. 47–54.

  47. Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht: Acta Mater., 2003, vol. 51, pp. 5555–70.

    Article  Google Scholar 

  48. X. Sauvage and Y. Ivanisenko: J. Mater. Sci., 2007, vol. 42, pp. 1615–21.

    Article  Google Scholar 

  49. X. Zhang, A. Godfrey, X. Huang, N. Hansen, and Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422–30.

    Article  Google Scholar 

  50. J.R. Tarpani, M.H.P. Braz, W.W. Bose Filho, and D. Spinelli: Mater. Res., 2002, vol. 5 (3), pp. 357–64.

    Article  Google Scholar 

  51. S. Patra, Sk. Md. Hasan, N. Narasaiah, and D. Chakrabarti: Mater. Sci. Eng. A, 2012, vol. 538, pp. 145–55.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), Government of India, for financial support under Project No. SR/S3/ME/009/2010 (G) dated July 14, 2011. The authors also thank Professor I. Samajdar, Indian Institute of Technology, Bombay, for extending the XRD facility. The authors wish to thank Research and Development Centre for Iron and Steel, Steel Authority of India Limited, Ranchi, Jharkhand, India, for providing low carbon steel for experimentation. The authors acknowledge the Central Instrumentation Facility, Indian Institute of Technology, for extending its EBSD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manna.

Additional information

Manuscript submitted January 7, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.B., Mukhopadhyay, N.K., Sastry, G.V.S. et al. Development of High-Strength Bulk Ultrafine-Grained Low Carbon Steel Produced by Equal-Channel Angular Pressing. Metall Mater Trans A 48, 5449–5466 (2017). https://doi.org/10.1007/s11661-017-4233-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4233-4

Navigation