Skip to main content
Log in

Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In 7xxx series aluminum alloys, the constituent large and small second-phase particles present during deformation process. The fraction and spatial distribution of these second-phase particles significantly influence the recrystallized structure, kinetics, and texture in the subsequent treatment. In the present work, the Monte Carlo Potts model was used to model particle-stimulated nucleation (PSN)-dominated recrystallization and grain growth in high-strength aluminum alloy 7050. The driving force for recrystallization is deformation-induced stored energy, which is also strongly affected by the coarse particle distribution. The actual microstructure and particle distribution of hot-rolled plate were used as an initial point for modeling of recrystallization during the subsequent solution heat treatment. Measurements from bright-field TEM images were performed to enhance qualitative interpretations of the developed microstructure. The influence of texture inhomogeneity has been demonstrated from a theoretical point of view using pole figures. Additionally, in situ annealing measurements in SEM were performed to track the orientational and microstructural changes and to provide experimental support for the recrystallization mechanism of PSN in AA7050.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Robson, J. D., Materials Science and Engineering, 2004, Vol. A382, pp. 112-121.

    Article  Google Scholar 

  2. Staley, J.T., and Lege, D. J., Journal De Physique IV, 1993, Vol. (3), pp. 179-190.

    Google Scholar 

  3. Dumont, D., Deschamps, A., and Brechet, Y., Materials Science and Engineering, 2003, Vol. A365, pp. 326-336.

    Article  Google Scholar 

  4. Field, D. P., L. Behrens, and J.M. Root., Tech Science Press, 2009, Vol.14.3, pp. 171-183.

    Google Scholar 

  5. Harnish, S. F., Padilla, H. A., Dantzig, J. A., Beaudoin, A. J., Gore, B. E., Robertson, I. M., and Weiland, H., Metall. Mater. Trans. A. 2005, Vol. 36(2), pp. 357-69

    Article  Google Scholar 

  6. Deng, Y. L., Wan, L., Zhang, Y., Zhang, X. -M., Journal of Alloys and Compounds, 2010, Vol. 488, pp. 88-94.

    Article  Google Scholar 

  7. Root, J. M. M.: Master Dissertation, Pullman, Wash, Washington State University, 2010.

  8. Polmear, I. J., Light Alloys from Traditional Alloys to Nanocrystals, Fourth edition, Elsevier, Oxford, UK, 2006, pp. 29-96.

    Google Scholar 

  9. Radhakrishnan, B., and Sarma, G. B., Continuum Scale Simulation of Engineering Materials Fundamentals – Microstructures – Process Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004, pp. 343-359

    Google Scholar 

  10. Doherty, R., Hughes, D., Humphreys, F., Jonas, J., Jensen, D., Kassner, M., King, W., Mcnelley, T., Mcqueen, H., and Rollett, A., Materials Science and Engineering, 1997, Vol. 238, pp. 219-274.

    Article  Google Scholar 

  11. Radhakrishnan, B., and Sarma, G., Philosophical Magazine, 2004, Vol. 84(22), pp. 2341–2366.

    Article  Google Scholar 

  12. Storm, S., and Jensen, D. J., Scripta Materialia, 2009, Vol. 60(7), pp. 477-80.

    Article  Google Scholar 

  13. Brahme, B., Fridy, J., Weiland, H., and Rollett, A. D., Modelling Simul. Mater. Sci. Eng, 2009, Vol. 17, 015005

    Article  Google Scholar 

  14. Holm E. A., Miodownik M. A., and Rollett, A. D., Acta Materialia, 2003, Vol. 51(9), pp. 2701-2716.

    Article  Google Scholar 

  15. Robson, J. D., and Prangnell, P. B., Act mater, 2001, Vol. 49, pp. 599-613.

    Article  Google Scholar 

  16. Yancy W. R., and Sanders, Jr. T.H., Material Sceince Forum, 2000, Vol. 331-337, pp. 799-804.

    Google Scholar 

  17. Weiland, H., and Cheong, S. W., Materials Science Forum, 2007, Vol. 558-559, pp. 383-87

    Article  Google Scholar 

  18. Eivani, A. Z., Zhou, J., and Duszczyk, J.: Recent Trends in Processing and Degradation of Aluminum Alloys, InTech, 2011, pp. 477–515.

  19. K. Huang, O.Engler, Y.J.Li, K.Marthinsen Mater. Sci. Eng. A 628(2015) 216-229

    Article  Google Scholar 

  20. Xu, W., Ferry, M., Cairney, J., and Humphreys, F., Acta Materialia, 2007, Vol. 55, pp. 5157-167.

    Article  Google Scholar 

  21. Robson, J. D., Henry, D. T., and Davis, B., Acta Materialia, 2009, Vol. 57, pp. 2739-747.

    Article  Google Scholar 

  22. Bennett, T. A., Petrov, R. H., Kestens, L. A. I., Zhuang, L. Z., and De Smet, P., Scripta Materialia, 2010, Vol. 63, pp. 461-64.

    Article  Google Scholar 

  23. Zhang, Y., Jensen, D. J., Zhang, Y., Lin, F., Zhang, Z., and Liu, Q., Scripta Materialia, 2012, Vol. 67, pp. 320-23.

    Article  Google Scholar 

  24. Troeger, L.P., and Starke, E. A., Materials Science and Engineering A, 2000, Vol. A293, pp. 19-29.

    Article  Google Scholar 

  25. Ramesh, C. S., Keshavamurthy, R., Koppad, P. G., and Kashyap, K. T.: Trans. Nonferrous Met. Soc. China, 2013, Vol. 23, pp. 53-58.

    Article  Google Scholar 

  26. Song, X., Rettenmay, M., Computational materials Science, 2007, 40(2), pp. 234–245.

    Article  Google Scholar 

  27. Eivani, A. R., Zhou, J., Duszczyk, J., Computational Materials Science, 2014, Vol. 86, pp. 193–199.

    Article  Google Scholar 

  28. Caleyo, F., Baudin, T., and Penelle, R., Scripta Materialia, 2002, Vol. 46(12), pp. 829-835.

    Article  Google Scholar 

  29. Baudin, T., Paillard, P., and Penelle, R., Scripta Materialia, 1997, Vol. 36(7), pp. 789-794.

    Article  Google Scholar 

  30. Wright, Stuart I., Electron Backscatter Diffraction in Materials Science, 2Ed, New York: Springer Science, 2009, pp. 329-337.

    Book  Google Scholar 

  31. Lens, A., C. Maurice, and Driver, J. H., Materials Science and Engineering, 2005, Vol. A 403.1-2144-53.

    Google Scholar 

  32. 32.Field, D. P., Bradford, L., Nowell, M., and Lillo, T.: Acta Mater. 2007, Vol. 55(12) 4233-241.

    Article  Google Scholar 

  33. Nowell, M. M., Field, D. P., Wright, S. I., Dingley, D., Scutts, P., and Suzuki, S.: Microscopy and Microanalysis, 2005, MAM11.S02.

  34. Nowell, M M, Wright, S. I., and Jo Carpenter, Microscopy and Microanalysis Microsc Microanal, 2009, Vol. 15.S2, pp.678-79.

    Article  Google Scholar 

  35. S.L. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, and D. Dye: Mater. Sci. Eng. A, 2008, vol. 488 (1–2), pp. 8–15.

    Article  Google Scholar 

  36. Kajihara, Katsura, Kazuhide Matsumoto, and Katsushi Matsumoto, Materials Science Forum MSF, 2006, Vol. 519-521, pp.1579-584

    Article  Google Scholar 

  37. Hurley, P. J., and F. J. Humphreys, J. Microsc., 2004, Vol. 213(3), pp. 225-34.

    Article  Google Scholar 

  38. Lischewski, I., D.m. Kirch, A. Ziemons, and G. Gottstein, Applications of Texture Analysis, 2009, Vol. 201, pp.95-102

    Google Scholar 

  39. Field, D. P., Ultramicroscopy, 1997, Vol. 67(1-4), pp. 1-9.

    Article  Google Scholar 

  40. M.A. Groeber and M.A. Jackson: Integr. Mater. Manuf. Innov., 2014, vol. 3 (5), pp. 1–17.

    Google Scholar 

  41. Abramoff, M. D., Magalhaes, P. J., Ram, S. J., Biophotonics International, 2004 Vol. 11(7), pp. 36-42.

    Google Scholar 

  42. Avrami, M., Journal of Chemical Physics, 1939, Vol. 7, pp.1103-1112.

    Article  Google Scholar 

  43. Deschamps, A., Handbook of Aluminum Volume 2 Alloy Production and Materials Manufacturing, Marcel Dekker, Inc, NY, USA, 2003, pp.47-80.

    Google Scholar 

  44. Cho, J. H., Rollett, A. D., Cho, J. S., Park, Y. J., Moon, J. T., Oh, K. H., Metall Trans, 2006,Vol. 37A, pp. 3085-3097.

    Article  Google Scholar 

  45. Chen, J. F., Zhen, L., Jiang, J. T., Yang, L., Shao, W. Z., and Zhang, B. Y., Materials Science and Engineering, 2012, Vol. A 539, pp. 115-23.

    Article  Google Scholar 

  46. Tangen, S., Sjølstad, K., Furu, T., and Nes, E., Metallurgical and Materials Transactions A, 2010, Vol. 41(11), pp. 2970-2983

    Article  Google Scholar 

  47. Humphreys, F. J., and Hatherly, M., Recrystallization and Related Annealing Phenomena 3rd, Elsevier Science Inc., Oxford, UK, 1995, pp. 285-319.

    Google Scholar 

  48. Vatne, H. E., and Nes, E., 1996, Comput. Mater. Sci., Vol. 7, pp. 5-10.

    Article  Google Scholar 

  49. Miodownik, M., Computational Materials Engineering an Introduction to Microstructure Evolution, Elsevier Inc, Oxford, UK, 2007, pp. 47-108.

    Google Scholar 

  50. Okuda, K., and Rollett, A. D., Computational Materials Science, 2005, Vol. 34, pp. 264–273.

    Article  Google Scholar 

  51. Zöllner, D., and Streitenberger, P., Micro-Macro-Interactions in Structured Media and Particle Systems, Springer, Chennai, India, 2008, pp. 3-18.

    Book  Google Scholar 

  52. Rollett, A. D., and Manohar, P., Continuum Scale Simulation of Engineering Materials Fundamentals – Microstructures – Process Applications, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004, pp. 77-111

    Google Scholar 

  53. Rollett, A. D., JOM, 2004, Vol. 56(4), pp. 63-68.

    Article  Google Scholar 

  54. Doherty, R. D., Progress m Marerrals Scrence, 1997, Vol. 42, pp. 39-58

    Article  Google Scholar 

  55. Engler, O., Kong, X. W., and Yang, P., Scripta Materialia, 1997, Vol. 37(11), pp. 1665-74.

    Article  Google Scholar 

  56. Field, D. P., Bradford, L. T., Nowell, M. N., Lillo, T.M., Acta Mater, 2007,Vol. 55, pp. 4233-4241.

    Article  Google Scholar 

  57. Mondal, Chandan, A. K. Singh, A. K. Mukhopadhyay, and K. Chattopadhyay, Metall and Mat Trans A Metallurgical and Materials Transactions, 2013, Vol. A 44.6, pp. 2764-777.

    Article  Google Scholar 

  58. Somerday and Humphreys, Mater. Sci. Technol. 19(2003) 20-29

    Article  Google Scholar 

  59. Gottstein, G., and Sebald, R., Journal of Materials Processing Technology, 2001, Vol. 117, pp. 282-87.

    Article  Google Scholar 

  60. Schäfer, C., Song, J., and Gottstein, G., Acta Materialia, 2009, Vol. 57(4), pp. 1026-034.

    Article  Google Scholar 

  61. Vandermeer, R. A., and Jensen, D. J., Acta Materialia, 2003, Vol. 51, pp. 3005-018.

    Article  Google Scholar 

  62. Habiby, F., and Humphreys, F. J., Textures and Microstructures, 1993, Vol. 20, pp. 125-140.

    Article  Google Scholar 

  63. Verlinden, B., Driver, J., Samajdar, I., and Doherty, R. D., Thermo-mechanical Processing of Metallic Materials, 1 Ed, Elsevier, Amsterdam, Netherland 2007.

    Google Scholar 

  64. Wright S.I., Adams B.L., Metall Trans A, 1992, Vol. 23, pp.759–767

    Article  Google Scholar 

  65. Bestmann, M., Piazolo, S., Spiers, C. J., and Prior, D. J., Journal of Structural Geology, 2005, Vol. 27.3, pp. 447-57.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled F. Adam.

Additional information

Manuscript submitted August 25, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, K.F., Long, Z. & Field, D.P. Analysis of Particle-Stimulated Nucleation (PSN)-Dominated Recrystallization for Hot-Rolled 7050 Aluminum Alloy. Metall Mater Trans A 48, 2062–2076 (2017). https://doi.org/10.1007/s11661-017-3967-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3967-3

Keywords

Navigation