Skip to main content
Log in

Effect of Multi-pass Friction Stir Processing on the Electrochemical and Corrosion Behavior of Pure Titanium in Strongly Acidic Solutions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The corrosion behavior of multi-pass friction stir processed (FSP) pure titanium was studied in 0.5 M H2SO4 solutions. Microstructures of treated and untreated samples were characterized using scanning electron microscopy. It was found that the grain size decreased with increasing the number of applied passes of FSP. Electrochemical tests including potentiodynamic polarization measurements and electrochemical impedance spectroscopy showed that three passes of FSP treatments resulted in a Ti sample which exhibited the best passive behavior and had the highest corrosion resistance among all samples in strongly acidic solutions of 0.5 M H2SO4. These improvements can be attributed to the emergence of diverse structural defects and grain refinement induced by FSP treatments. Moreover, Mott–Schottky analysis was performed to investigate the semiconducting properties of passive films. It was found that the semiconducting behavior remained the same after FSP treatments but it reduced donor densities and surprisingly introduced an additional donor level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. W. Shoesmith and J. J. Noël: Non-Ferrous Metals and Alloys, Elsevier Ltd, Amsterdam, 2010.

    Google Scholar 

  2. R. R. Boyer: Mater. Sci. Eng. A, 1996, vol 213 (1-2), pp. 103-114.

    Article  Google Scholar 

  3. V. N. Moiseyev; Titanium Alloys, Taylor & Francis Group, New York, 2006.

    Google Scholar 

  4. M. Yamada: Mater. Sci. Eng. A, 1996, vol. 213 (1-2), pp. 8-15.

    Article  Google Scholar 

  5. J. Komotori, B. Lee, H. Dong, and P. Dearnley: Wear, 2001, vol. 251 (1-12), pp. 1239-1249.

    Article  Google Scholar 

  6. J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-vidal, and E. Mahé: Mater. Sci. Eng. B, 1997, vol. 47 (3), pp. 235-243.

    Article  Google Scholar 

  7. P. D. Bianco, P. Ducheyne, and J. M. Cuckler: J. Biomed. Mater. Res. A, 1996, vol. 31 (2), pp. 227-234.

    Article  Google Scholar 

  8. H. S. Kim, S. J. Yoo, J. W. Ahn, D. H. Kim, and W. J. Kim: Mater. Sci. Eng. A, 2011, vol. 528 (29-30), pp. 8479-8485.

    Article  Google Scholar 

  9. E. K. Sevidova and A. A. Simonova: Surf. Eng. Appl. Electrochem., 2011, vol. 47(2), pp. 162–66.

  10. M. Hoseini, A. Shahryari, S. Omanovic, and J. a. Szpunar: Corros. Sci., 2009, vol. 51(12), pp. 3064–67.

  11. L. Jin, W. Cui, X. Song, G. Liu, and L. Zhou; Trans. Nonferrous Met. Soc. China, 2014, vol. 24(6), pp. 2529-2535.

    Article  Google Scholar 

  12. J. Li, S. J. Li, Y. L. Hao, H. H. Huang, Y. Bai, Y. Q. Hao, Z. Guo, J. Q. Xue, and R. Yang: Acta Biomater., 2014, vol. 10 (6), pp. 2866-2875.

    Article  Google Scholar 

  13. J. Tang, H. Y. Luo, and Y. B. Zhang: Int. J. Adv. Manuf. Technol., 2016, doi:10.1007/s00170-016-9000-y.

    Google Scholar 

  14. S. Mironov, Y. S. Sato, and H. Kokawa: Acta Materialia, 2009, vol. 57 (15), pp. 4519-4528.

    Article  Google Scholar 

  15. W.-B. Lee, C.-Y. Lee, W.-S. Chang, Y.-M. Yeon, and S.-B. Jung: Mater. Lett., 2005, vol. 59 (26), pp. 3315-3318.

    Article  Google Scholar 

  16. F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Ltd, Amsterdam, 2004.

    Google Scholar 

  17. R.S. Mishra, P. S. De, N. Kumar: Friction Stir Welding and Processing: Science and Engineering, Springer International Publishing, Switzerland, 2014.

    Book  Google Scholar 

  18. M. Nie, C. T. Wang, M. Qu, N. Gao, J. A. Wharton, and T. G. Langdon: J. Mater. Sci., 2014, vol. 49, pp. 2824–31.

  19. K. D. Ralston and N. Birbilis: Corrosion, 2010, vol. 66(7), pp. 075005(1–13).

  20. F. C. Liu, J. Liao, Y. Gao, and K. Nakata: J. Alloys Compd., 2015, vol. 626, pp. 304-308.

    Article  Google Scholar 

  21. Z. Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39 (3), pp. 642-658.

    Article  Google Scholar 

  22. J. A. Petit, G. Chatainier, and F. Dabosi: Corros. Sci., 1981, vol. 21 (4), pp. 279-299.

    Article  Google Scholar 

  23. S. Hrapovic, B. L. Luan, M. D. Amours, G. Vatankhah, and G. Jerkiewicz: Langnuir, 2001, vol. 17 (10), pp. 3051-3060.

    Article  Google Scholar 

  24. H. Garbacz, M. Pisarek, and K. J. Kurzydłowski: Biomol. Eng., 2007, vol. 24 (6), pp. 559-563.

    Article  Google Scholar 

  25. M. Schönleber, D. Klotz, and E. Ivers-Tiffée: Electrochim. Acta, 2014, vol. 131, pp. 20-27.

    Article  Google Scholar 

  26. B.A. Boukamp, Solid State Ionics, 1993, vol. 62 (1-2), pp. 131-141.

    Article  Google Scholar 

  27. A. Fattah-Alhosseini and S. Vafaeian: Appl. Surf. Sci., 2016, vol. 360(B), pp. 921–28.

  28. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani: J. Electrochem. Soc., 2010, vol. 157 (12), pp. C452-C457.

    Article  Google Scholar 

  29. L. Hamadou, L. Aïnouche, A. Kadri, S. A. A. Yahia, and N. Benbrahim: Electrochim. Acta, 2013, vol. 113, pp. 99-108.

    Article  Google Scholar 

  30. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani: J. Electrochem. Soc., 2010, vol. 157 (12), pp. C458-C463.

    Article  Google Scholar 

  31. M. E. Orazem, I. Frateur, B. Tribollet, V. Vivier, S. Marcelin, N. Pebere, A. L. Bunge, E. A. White, D. P. Riemer, and M. Musiani: J. Electrochem. Soc., 2013, vol. 160 (6), pp. C215-C225.

    Article  Google Scholar 

  32. E. McCafferty, Introduction to Corrosion Science: Chapter 9, Passivity, pp. 209–262, Springer, New York, 2010.

  33. S. P. Harrington and T. M. Devine: J. Electrochem. Soc., 2008, vol. 155 (8), pp. C381-C386.

    Article  Google Scholar 

  34. R. De Gryse, W. P. Gomes, F. Cardon and J. Vennik: J. Electrochem. Soc., 1975, vol. 122 (5), pp. 711-712.

    Article  Google Scholar 

  35. S. Giménez and J. Bisquert: Photoelectrochemical Solar Fuel Production: chapter 1, Semiconductor Electrochemistry, ed. by L. M. Peter, 2016, pp. 3–40.

  36. M. D. C Belo, N. Hakiki, and M. G. Ferreira: Electrochim. Acta, 1999, vol. 44 (14), pp. 2473-2481.

    Article  Google Scholar 

  37. D. Sazou, K. Saltidou, and M. Pagitsas: Electrochim. Acta, 2012, vol. 76, pp. 48-61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fattah-Alhosseini Assistant Professor.

Additional information

Manuscript submitted April 25, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-Alhosseini, A., Attarzadeh, F.R. & Vakili-Azghandi, M. Effect of Multi-pass Friction Stir Processing on the Electrochemical and Corrosion Behavior of Pure Titanium in Strongly Acidic Solutions. Metall Mater Trans A 48, 403–411 (2017). https://doi.org/10.1007/s11661-016-3854-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3854-3

Keywords

Navigation