Skip to main content

Advertisement

Log in

The Role of Lattice Misfit on Heterogeneous Nucleation of Pure Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

α-Alumina (Al2O3) single crystals with different termination planes were used as heterogeneous nucleation substrates for liquid aluminum to varying lattice misfits at the interface between substrate and newly nucleated aluminum grain. Undercooling during the nucleation process was measured for interface configurations with varied lattice misfit, while the solidified Al/Al2O3 interfaces were directly observed by high-resolution transmission electron microscopy (HRTEM). Based on experimental results, the effect of lattice misfit on nucleation behavior was systematically investigated following previous misfit-interfacial energy models, with clarification being made by the undercooling measurement and HRTEM observations of the interfaces in the Al/Al2O3 system. When the misfit is smaller than 13 pct, both experimental results and theoretical analysis show that the currently existing models through modification and incorporating energy calculation can be used to fit the detected undercooling of investigated system. Beyond 13 pct, a new hypothesis was developed to accommodate lattice misfit with stacking faults such as microtwins according to the HRTEM analysis. The interfacial energy is then replaced by the stacking fault energy accumulated in the strained area. It is shown that the lattice misfit plays an important role in determining the heterogeneous nucleation of liquid aluminum. The nucleation undercooling is then able to be predicted by the theoretically calculated interfacial energy using the integrated models developed in the work. The prediction results were also verified by the HRTEM analysis on the nucleation interface of the Al/Al2O3 systems and detected undercooling on corresponding systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.F. Kelton, and A.L. Greer: Nucleation in Condensed Matter, Pergamon, Oxford, 2010, pp. 19–28.

    Book  Google Scholar 

  2. B. Cantor: Phil. Trans. R. Soc. Lond. A, 2003, vol. 361, pp. 409–417.

    Article  Google Scholar 

  3. O.M. Magnussen, B.M. Ocko, M.J. Regan, K. Penanen, P.S. Pershan, and M. Deutsch: Phys. Rev. Lett., 1995, vol. 74, no. 22, pp. 4444–4447.

    Article  Google Scholar 

  4. S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, and M. Rühle: Science, 2005, vol. 310, no. 5748, pp. 661–663.

    Article  Google Scholar 

  5. S.B. Lee, and Y.M. Kim: Acta Mater., 2011, vol. 59, pp. 1383–1388.

    Article  Google Scholar 

  6. M. Gandman, Y. Kauffmann, C.T. Koch, and W.D. Kaplan: Phys. Rev. Lett., 2013, vol. 110, no. 8, p. 086106.

    Article  Google Scholar 

  7. L. Yang, C.E. Birchenall, G.M. Pound, and M.T. Simnad: Acta Metall., 1954, vol. 2, no. 3, pp. 462–469.

    Article  Google Scholar 

  8. M. Qian: Acta Mater., 2007, vol. 55, pp. 943–953.

    Article  Google Scholar 

  9. M. Qian, and J. Ma: J Cryst. Growth, 2012, vol. 355, no. 1, pp. 73–77.

    Article  Google Scholar 

  10. D. Turnbull, and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, no. 6, pp. 1292–1298.

    Article  Google Scholar 

  11. F.C. Frank, and J.H. van der Merwe: Proc. R. Soc. A, 1949, vol. 198, no. 1053, pp. 205–216.

    Google Scholar 

  12. J.W. Matthews, and A.E. Blakeslee: J. Cryst. Growth, 1974, vol. 27, pp. 118–125.

    Google Scholar 

  13. R. People, and J.C. Bean: Appl. Phys. Lett., 1985, vol. 47, no. 3, pp. 322–324.

    Article  Google Scholar 

  14. N.H. Fletcher and K.W. Lodge: Epitaxial Growth, Part B, in ed. J. W. Matthews, Academic Press, New York, 1975, pp. 529-530.

    Book  Google Scholar 

  15. R.W. Vook, and C.T. Horng: Philos. Mag., 1976, vol. 33, no. 5, pp. 843–861.

    Article  Google Scholar 

  16. B.L. Bramfitt: Metall. Trans., 1970, vol. 1, no. 7, pp. 1987–1995.

    Article  Google Scholar 

  17. M. Zarif, B. McKay, J. Li, and P. Schumacher: BHM., 2010, vol. 155, no. 11, pp. 506–511.

    Google Scholar 

  18. M. Zarif, B. Mckay, and P. Schumacher: Metall. Mater. Trans. A, 2011, vol. 42A, no. 6, pp. 1684–1691.

    Article  Google Scholar 

  19. L. Yang, M. Xia, and J.G. Li: Mater. Lett., 2014, vol. 132, pp. 52–54.

    Article  Google Scholar 

  20. P.M. Kelly, and M.-X. Zhang: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 833–839.

    Article  Google Scholar 

  21. G.J. Shiflet, and J.H. Van der Merwer: J. Electron. Mater., 1991, vol. 20, pp. 785–791.

    Article  Google Scholar 

  22. M.-X. Zhang, and P.M. Kelly: Acta Mater., 2005, vol. 53, no. 4, pp. 1073–1084.

    Article  Google Scholar 

  23. M.-X. Zhang, and P.M. Kelly: Acta Mater., 2005, vol. 53, no. 4, pp. 1085–1096.

    Article  Google Scholar 

  24. M.-X. Zhang, S.Q. Chen, H.-P. Ren, and P.M. Kelly: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1077–1086.

    Article  Google Scholar 

  25. M.-X. Zhang, D. Qiu, and P.M. Kelly: Thin Solid Films, 2008, vol. 516, pp. 5498–5502.

    Article  Google Scholar 

  26. R. Feder, and A.S. Nowick: Phys. Rev., 1958, vol. 109, no. 6, pp. 1959–1963.

    Article  Google Scholar 

  27. W.M. Yim, and R.J. Paff: J. Appl. Phys., 1974, vol. 45, no. 3, pp. 1456–1457.

    Article  Google Scholar 

  28. Y. Wang, H.T. Li, and Z. Fan: Trans. Indian Inst. Met., 2012, vol. 65, no. 6, pp. 653–661.

    Article  Google Scholar 

  29. A.M. Pérez-Sierra, J. Pons, R. Santamarta, P. Vermaut, and P. Ochin: Acta Mater., 2015, vol. 93, pp. 164–174.

    Article  Google Scholar 

  30. J.H. van der Merwe: J. Appl. Phys., 1963. vol. 34, no. 1, pp. 117–122.

    Article  Google Scholar 

  31. R. Peierls: Proc. Phys. Soc., 1940, vol. 52, no. 1, pp. 34–37.

    Article  Google Scholar 

  32. F.R.N. Nabarro: Proc. Phys. Soc., 1947, vol. 59, no. 2, pp. 256–272.

    Article  Google Scholar 

  33. J.H. van der Merwe: J. Appl. Phys., 1963, vol. 34, no. 1, pp. 123–127.

    Article  Google Scholar 

  34. Z. Fan: Metall. Mater. Trans. A, 2013, vol. 44A, no. 3, pp. 1409–1418.

    Article  Google Scholar 

  35. W.A. Jesser, and J.W. Matthews: Philos. Mag., 1967, vol. 15, no. 138, pp. 1097–1106.

    Article  Google Scholar 

  36. J.W. Matthews, and A.E. Blakeslee: J. Cryst. Growth, 1975, vol. 29, pp. 273–280.

    Article  Google Scholar 

  37. K. Shiojima: J. Vac. Sci. Technol. B, 2000, vol. 18, no. 1, pp. 37–40.

  38. L. Lu, Z.Y. Gao, B. Shen, F.J. Xu, S. Huang, Z.L. Miao, Y. Hao, Z.J. Yang, G.Y. Zhang, X.P. Zhang, J. Xu, and D.P. Yu: J. Appl. Phys., 2008, vol. 104, p. 123525.

    Article  Google Scholar 

  39. M.J. Weins, H. Gleiter, and B. Chalmers: J. Appl. Phys., 1971, vol. 42, no. 7, pp. 2639–2645.

    Article  Google Scholar 

  40. R.W. Balluffi, Y. Komem, and T. Schober: Surf. Sci., 1972, vol. 31, pp. 68–103.

    Article  Google Scholar 

  41. R.W. Vook: Thin Solid Films, 1979, vol. 64, pp. 91–102.

    Article  Google Scholar 

  42. R.W. Vook: Int. Met. Rev., 1982, vol. 27, no. 4, pp. 209–245.

    Article  Google Scholar 

  43. D. Cherns, and C.J. Kiely: Mater. Sci. Eng. A, 1989, vol. 113, pp. 43–50.

    Article  Google Scholar 

  44. A. Trampert, and K.H. Ploog: Cryst. Res. Technol., 2000, vol. 35, no. 6–7, pp. 793–806.

    Article  Google Scholar 

  45. K.H.L. Zhang, V.K. Lazarov, P.L. Galindo, F.E. Oropeza, D.J. Payne, H.H.-C. Lai, and R.G. Egdell: Cryst. Growth Des., 2012, vol. 12, no. 2, pp. 1000–1007.

    Article  Google Scholar 

  46. N.H. Fletcher: J. Appl. Phys., 1964, vol. 35, no. 1, pp. 234–240.

    Article  Google Scholar 

  47. N.H. Fletcher: Philos. Mag., 1967, vol. 16, no. 139, pp. 159–164.

    Article  Google Scholar 

  48. S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2007, vol. 55, no. 20, pp. 6843–6851.

    Article  Google Scholar 

  49. J.P. Hirth, and J. Lothe: Theory of Dislocations, 2nd ed., Krieger Pub. Co, Malabar, 1982, p. 839.

    Google Scholar 

  50. M.I. Baskes: Phys. Rev. B, 1992, vol. 46, no. 5, pp. 2727–2742.

    Article  Google Scholar 

  51. S. Ogata, J. Li, and S. Yip: Science, 2002, vol. 298, no. 25, pp. 807–811.

    Article  Google Scholar 

  52. A. Tiwari, J. Narayan, C. Jin, and A. Kvit: Appl. Phys. Lett., 2002, vol. 80, no. 8, pp. 1337–1339.

    Article  Google Scholar 

  53. Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292–304.

    Article  Google Scholar 

  54. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–2835.

    Article  Google Scholar 

  55. J. Narayan: Acta Mater., 2013, vol. 61, pp. 2703–2724.

    Article  Google Scholar 

  56. P. Pant, J.D. Budai, and J. Narayan: Acta Mater., 2010, vol. 58, pp. 1097–1103.

    Article  Google Scholar 

  57. H. Zhou, M.F. Chisholm, P. Pant, H.J. Chang, J. Gazquez, S.J. Pennycook, and J. Narayan: Appl. Phys. Lett., 2010, vol. 97, no. 12, p. 121914.

    Article  Google Scholar 

  58. D.L. Medlin, K.F. McCarty, R.Q. Hwang, S.E. Guthrie, and M.I. Baskes: Thin Solid Films, 1997, vol. 299, no. 1–2, pp. 110–114.

    Article  Google Scholar 

  59. W.F. Gale, and T.C. Totemeier: Smithells metals reference book, 8th ed., in ed. E. A. Brandes, Thermochemical data, Butterworths, London, 1983, pp. 8-1–14-1.

Download references

Acknowledgments

The authors are grateful for the financial support from NSFC (No. 51174134, No. 51474148), Shanghai STC (No. 11JC1405900), and NBRPC (No. 2011CB012900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Xia.

Additional information

Manuscript submitted March 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yang, L., Zhang, D. et al. The Role of Lattice Misfit on Heterogeneous Nucleation of Pure Aluminum. Metall Mater Trans A 47, 5012–5022 (2016). https://doi.org/10.1007/s11661-016-3691-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3691-4

Keywords

Navigation