Skip to main content

Advertisement

Log in

Ultrahigh Ductility, High-Carbon Martensitic Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Based on the proposed design idea of the anti-transformation-induced plasticity effect, both the additions of the Nb element and pretreatment of the normalization process as a novel quenching–partitioning–tempering (Q–P–T) were designed for Fe-0.63C-1.52Mn-1.49Si-0.62Cr-0.036Nb hot-rolled steel. This high-carbon Q–P–T martensitic steel exhibits a tensile strength of 1890 MPa and elongation of 29 pct accompanied by the excellent product of tensile and elongation of 55 GPa pct. The origin of ultrahigh ductility for high-carbon Q–P–T martensitic steel is revealed from two aspects: one is the softening of martensitic matrix due to both the depletion of carbon in the matensitic matrix during the Q–P–T process by partitioning of carbon from supersaturated martensite to retained austenite and the reduction of the dislocation density in a martensitic matrix by dislocation absorption by retained austenite effect during deformation, which significantly enhances the deformation ability of martensitic matrix; another is the high mechanical stability of considerable carbon-enriched retained austenite, which effectively reduces the formation of brittle twin-type martensite. This work verifies the correctness of the design idea of the anti-TRIP effect and makes the third-generation advanced high-strength steels extend to the field of high-carbon steels from low- and medium-carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: Acta Mater., 2014, vol. 73, pp. 298-311.

    Article  Google Scholar 

  2. C.G. Lee, S.J. Kim, T.H. Lee, and S.H. Lee: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2004, vol. 371, pp. 16-23.

    Article  Google Scholar 

  3. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-22.

    Article  Google Scholar 

  4. T.Y. Hsu and Z.Y. Xu: Materials Science Forum, Trans Tech Publ, Switzerland, 2007, pp. 2283-86.

    Google Scholar 

  5. J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-37.

    Article  Google Scholar 

  6. . Kuziak, R. Kawalla, and S. Waengler: Archives Civil Mech. Eng., 2008, vol. 8, pp. 103-17.

    Article  Google Scholar 

  7. D.K. Matlock and J.G. Speer: Microstructure and Texture in Steels, Springer, NY, 2009, pp. 185-205.

    Book  Google Scholar 

  8. K. Yong-lin, H. Qi-hang, Z. Xian-Meng, and C. Ming-Hui: Mater. Des., 2013, vol. 44, pp. 331-9.

    Article  Google Scholar 

  9. K. Jeong, J-E. Jin, Y.-S. Jung, S. Kang, and Y.-K. Lee: Acta Mater., 2013, vol. 61, pp. 3399-410.

    Article  Google Scholar 

  10. S. Jing and Y. Hao: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2013, vol. 586, pp. 100-7.

    Article  Google Scholar 

  11. X.D. Wang, Z.H. Guo, and Y.H. Rong: Mater. Sci. Eng.: A, 2011, vol. 529, pp. 35-40.

    Article  Google Scholar 

  12. Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying: Acta Mater., 2015, vol. 84, pp. 229-36.

    Article  Google Scholar 

  13. S. Qin, Y. Liu, Q. Hao, Y. Wang, N. Chen, X. Zuo, and Y. Rong: Mater. Sci. Eng.: A, 2016, vol. 663, pp. 151-6.

    Article  Google Scholar 

  14. B.X. Huang, X.D. Wang, L. Wang, and Y.H. Rong: Metall. Mater. Trans., 2008, vol. 39A, pp. 717-24.

    Article  Google Scholar 

  15. N. Zhong, X.D. Wang, L. Wang, and Y.H. Rong: Mater. Sci. Eng.: A, 2009, vol. 506, pp. 111-6.

    Article  Google Scholar 

  16. S. Qin, Y.Liu, Q. Hao, Y. Wang, N. Chen, X. Zuo, and Y. Rong: Metall. Mater. Trans., 2015, vol. 46A, pp. 4047-55.

    Article  Google Scholar 

  17. J.H. Jang, I.G. Kim, and H.K.D.H. Bhadeshia: Computat. Mater. Sci., 2009, vol. 44, pp. 1319-26.

    Article  Google Scholar 

  18. B.-Joo Lee: Calphad, 1992, vol. 16, pp. 121–49.

  19. X.D. Wang, W.Z. Xu, Z.H. Guo, L. Wang, and Y.H. Rong: Mater. Sci. Eng.: A, 2010, vol. 527, pp. 3373-8.

    Article  Google Scholar 

  20. W. Woo, L. Balogh, T. Ungar, H. Choo, and Z. Feng: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, vol. 498, pp. 308-13.

    Article  Google Scholar 

  21. W. Li, W. Xu, X. Wang, and Y. Rong: J. Alloys Compds., 2009, vol. 474, pp. 546-50.

    Article  Google Scholar 

  22. International Organization for Standardization: International Standard ISO 2566/1-1984(E), pp. 1–28.

  23. K. Sugimoto, T. Iida, J. Sakaguchi, and T. Kashima: ISIJ Int., 2000, vol. 40, pp. 902-908.

    Article  Google Scholar 

  24. K. Sugimoto, M. Kobayashi, A. Nagasaka, and S. Hashimoto: ISIJ Int., 1995, vol. 35, pp. 1407-14.

    Article  Google Scholar 

  25. N.Q. Chinh, G. Horvath, Z. Horita, and T.G. Langdon: Acta Mater. 2004, vol. 52, pp. 3555-63.

    Article  Google Scholar 

  26. K. Zhang, M. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng.: A, 2011, vol. 528, pp. 8486-91.

    Article  Google Scholar 

  27. Y. Wang, K. Zhang, Z. Guo, N. Chen, and Y. Rong: Acta Metall. Sinica, 2012, vol. 48, pp. 641-8.

    Article  Google Scholar 

  28. Y. Wang, K. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2012, vol. 552, pp. 288-94.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (No. 51371117) and one author, Professor Yonghua Rong, sincerely appreciates Dr. E. De. Moor and Professor J. G. Speer for a reference on Oliver formula provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nailu Chen.

Additional information

Manuscript submitted March 21, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, S., Liu, Y., Hao, Q. et al. Ultrahigh Ductility, High-Carbon Martensitic Steel. Metall Mater Trans A 47, 4853–4861 (2016). https://doi.org/10.1007/s11661-016-3651-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3651-z

Keywords

Navigation