Skip to main content
Log in

Approach to In-Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.B.D. Ellis: Int. Mater. Rev., 1996, vol. 41, pp. 41–58.

    Article  Google Scholar 

  2. D. Storjohann, O.M. Barabash, S.S. Babu, S.A. David, P.S. Sklad, and E.E. Bloom: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3237–47.

    Article  Google Scholar 

  3. A. Urena, M.D. Escalera, and L. Gil: Compos. Sci. Technol., 2000, vol. 60, pp. 613–22.

    Article  Google Scholar 

  4. X.P. Zhang, G.F. Quan, and W. Wei: Compos. Part A, 1999, vol. 30A, pp. 823–27.

    Article  Google Scholar 

  5. W.P. Weng and T.H. Chuang: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2673–82.

    Article  Google Scholar 

  6. A. Suzumura and Y.J. Xing: Prepr. Nat. Meet. JWS, 1994, vol. 55, pp. 282–83.

    Google Scholar 

  7. A. Suzumura, M. Matsumoto, and Y.J. Xing: Prepr. Nat. Meet. JWS, 1996, vol. 59, pp. 262–63.

    Google Scholar 

  8. T. Enjo, K. Ikeuchi, Y. Murakami, and N. Suzuki: Trans. JWRI, 1987, vol. 16, pp. 285–92.

    Google Scholar 

  9. R. Klehn and T.W. Eagar: WRC Bull., 1993, vol. 385, pp. 1–26.

    Google Scholar 

  10. Z. Li, Y. Zhou, and T.H. North: J. Mater. Sci., 1995, vol. 30, pp. 1075–82.

    Article  Google Scholar 

  11. A.A. Shirzadi and E.R. Wallach: Mater. Sci. Technol., 1997, vol. 13, pp. 135–42.

    Article  Google Scholar 

  12. A. Suzumura and Y.J. Xing: Mater. Trans. JIM, 1996, vol. 37, pp. 1109–15.

    Article  Google Scholar 

  13. J.R. Askew, J.F. Wilde, and T.I. Khan: Mater. Sci. Technol., 1998, vol. 14, pp. 920–24.

    Article  Google Scholar 

  14. W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.

    Article  Google Scholar 

  15. Y. Shen, W.F. Gale, J.W. Fergus and X. Wen: Mater. Sci. Technol., 2001, vol. 17, pp. 1293–98.

    Article  Google Scholar 

  16. Z.W. Xu, J.C. Yan, B.Y. Zhang, X.L. Kong, and S.Q. Yang: Mater. Sci. Eng., 2006, vol. 415, pp. 80–86.

    Article  Google Scholar 

  17. G.O. Cook III and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.

    Article  Google Scholar 

  18. I. Tuah-poku, M. Dollar, and T.B. Massalski: Metall. Trans. A, 1988, vol. 19A, pp. 675–86.

    Article  Google Scholar 

  19. W.H. Liu, D.Q. Sun, S.S. Jia, and X.M. Qiu: Trans. China Weld. Inst., 2003, vol. 24, pp. 13–16 (in Chinese).

    Google Scholar 

  20. G. Zhang, J. Zhang, Y. Pei, S. Li, and D. Chai: Mater. Sci. Eng. A, 2008, vol. 488A, pp. 146–56.

    Article  Google Scholar 

  21. G. Zhang, W. Su, J. Zhang, and A. Suzumura: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1982–94.

    Article  Google Scholar 

  22. W.P. Weng and T.H. Chuang: Mater. Manuf. Process., 1997, vol. 12, pp. 1107–32.

    Article  Google Scholar 

  23. E. Lugscheider, S. Ferrara, H. Janssen, A. Reimann, and B. Wildpanner: Microsystem Technol., 2004, vol. 10, pp. 233–36.

    Article  Google Scholar 

  24. J.C. Yan, H.B. Xu, L. Shi, X.H. Wang, and S.Q. Yang: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 760–764.

    Article  Google Scholar 

  25. B. Wielage, I. Hoyer and S. Weis: Weld. J., 2007, vol. 86, pp. 67–70.

    Google Scholar 

  26. S. Weis, I. Hoyer and B. Wielage: Weld. J., 2008, vol. 87, pp. 35–37.

    Google Scholar 

  27. J.C. Yan, Z.W. Xu, L. Shi, X. Ma, and S.Q. Yang: Mater. Des., 2011, vol. 32, pp. 343–47.

    Article  Google Scholar 

  28. K.O. Cooke, T.I. Khan, and G.D. Oliver: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2271–77.

    Article  Google Scholar 

  29. J.H. Huang, Y.L. Dong, and Y. Wan: J. Mater. Process. Technol., 2007, vol. 190, pp. 312–16.

    Article  Google Scholar 

  30. J.H. Huang, Y.L. Dong, Y. Wan, J.G. Zhang, and G.A. Zhou: Mater. Sci. Technol., 2005, vol. 21, pp. 1217–21.

    Article  Google Scholar 

  31. S.C. Tjong and Z.Y. Ma: Mater. Sci. Eng. R, 2000, vol. 29R, pp. 49–113.

    Article  Google Scholar 

  32. B.S.B. Reddy, K. Das, and S. Das: J. Mater. Sci., 2007, vol. 42, pp. 9366–78.

    Article  Google Scholar 

  33. J.T. Niemann and G.W. Wille: Weld. J., 1978, vol. 57, pp. 285s–94s.

    Google Scholar 

  34. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang: Acta Mater., 2006, vol. 54, pp. 5241–49.

    Article  Google Scholar 

  35. H. Sato, T. Murase, T. Fujii, S. Onaka, Y. Watanabe, and M. Koto: Acta Mater., 2008, vol. 56, pp. 4549–58.

    Article  Google Scholar 

  36. Y. Watanabe, H. Eryu, and K. Matsuura: Acta Mater., 2001, vol. 49, pp. 775–83.

    Article  Google Scholar 

  37. Y. Watanabe, N. Yamanaka, and Y. Fukui: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3253–61.

    Article  Google Scholar 

  38. Y. Watanabe and T. Nakamura: Intermetallics, 2001, vol. 9, pp. 33–43.

    Article  Google Scholar 

  39. S. El-Hadad, H. Sato, and Y. Watanabe: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3249–56.

    Article  Google Scholar 

  40. Z.Y. Ma and S.C. Tjong: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1931–42.

    Article  Google Scholar 

  41. S.C. Tjong, G.S. Wang, and Y.W. Mai: Compos. Sci. Technol., 2005, vol. 65, pp. 1537–46.

    Article  Google Scholar 

  42. S.C. Tjong and G.S. Wang: Mater. Sci. Eng. A, 2004, vol. 386A, pp. 48–53.

    Article  Google Scholar 

  43. P. Yu, Z. Mei, and S.C. Tjong: Mater. Chem. Phys., 2005, vol. 93, pp. 109–16.

    Article  Google Scholar 

  44. C.F. Feng and L. Froyen: Compos. Part A, 2000, vol. 31A, pp. 385–90.

    Article  Google Scholar 

  45. S. Yu, H. Feng, and Y. Li: J. Alloys Compd., 2008, vol. 457, pp. 404–07.

    Article  Google Scholar 

  46. X. Wang, A. Jha, and R. Brydson: Mater. Sci. Eng. A, 2004, vol. 364A, pp. 339–45.

    Article  Google Scholar 

  47. S.H. Wang and P.W. Kao: Acta Mater., 1998, vol. 46, pp. 2675–82.

    Article  Google Scholar 

  48. Q. Zhang, B.L. Xiao, D. Wang, and Z.Y. Ma: Mater. Chem. Phys., 2011, vol. 130, pp. 1109–17.

    Article  Google Scholar 

  49. M. Nofar, H.R. Madaah Hosseini, and N. Kolagar-Daroonkolaie: Mater. Des., 2009, vol. 30, pp. 280–86.

    Article  Google Scholar 

  50. V. Abbasi Chianeh, H.R. Madaah Hosseini, and M. Nofar: J. Alloys Compd., 2009, vol. 473, pp. 127–32.

    Article  Google Scholar 

  51. M. Zeren and E. Karakulak: J. Alloys Compd., 2008, vol. 450, pp. 255–59.

    Article  Google Scholar 

  52. Y. Watanabe and S. Oike: Acta Mater., 2005, vol. 53, pp. 1631–41.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The present research was supported by the National Science Foundation of China (Grant Nos. 51275390 and 50875199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifeng Zhang.

Additional information

Manuscript submitted May 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Liao, X., Chen, B. et al. Approach to In-Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite. Metall Mater Trans A 46, 2568–2578 (2015). https://doi.org/10.1007/s11661-015-2821-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2821-8

Keywords

Navigation