Skip to main content

Advertisement

Log in

Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A trimodal metal matrix composite (MMC) based on AA (Al alloy) 5083 (Al-4.4Mg-0.7Mn-0.15Cr wt pct) was synthesized by cryomilling powders followed by compaction of blended powders and ceramic particles using two successive dual mode dynamic forgings. The microstructure consisted of 66.5 vol pct ultrafine grain (UFG) region, 30 vol pct coarse grain (CG) region and 3.5 vol pct reinforcing boron carbide particles. The microstructure imparted high-tensile yield strength (581 MPa) compared to a conventional AA 5083 (242 MPa) and enhanced ductility compared to 100 pct UFG Al MMC. The deformation behavior of the heterogeneous structure and the effects of CG regions on crack propagation were investigated using in situ scanning electron microscopy micro-tensile tests. The micro-strain evolution measured using digital image correlation showed early plastic strain localization in CG regions. Micro-voids due to the strain mismatch at CG/UFG interfaces were responsible for crack initiation. CG region toughening was realized by plasticity-induced crack closure and zone shielding of disconnected micro-cracks. However, these toughening mechanisms did not effectively suppress its brittle behavior. Further optimization of the CG distribution (spacing and morphology) is required to achieve toughness levels required for structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Gleiter, “Nanocrystalline materials,” Progess Mater. Sci., vol. 33, pp. 223–315, 1990.

    Article  Google Scholar 

  2. R. Birringer, “Nanocrystalline materials,” Mater. Sci. Eng. A, vol. 117, pp. 33–43, Sep. 1989.

    Article  Google Scholar 

  3. C. Suryanarayana, “Nanocrystalline materials,” Int. Mater. Rev., vol. 40, no. 2, pp. 41–64, Jan. 1995.

    Article  Google Scholar 

  4. K. Lu, “Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties,” Mater. Sci. Eng. R, no. 16, pp. 161–221, 1996.

    Article  Google Scholar 

  5. H. Gleiter, “Nanostructured materials:Basic concepts and microstructure,” Acta Mater., vol. 48, pp. 1–29, 2000.

    Article  Google Scholar 

  6. M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrystalline materials,” Prog. Mater. Sci., vol. 51, no. 4, pp. 427–556, May 2006.

    Article  Google Scholar 

  7. R. . Valiev, R. . Islamgaliev, and I. . Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci., vol. 45, no. 2, pp. 103–189, Mar. 2000.

    Article  Google Scholar 

  8. V. L. Tellkamp, A. Melmed, and E. J. Lavernia, “Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy,” Metall. Mater. Trans. A, vol. 32A, no. September, pp. 2335–2343, 2001.

    Article  Google Scholar 

  9. D. B. Witkin and E. J. Lavernia, “Synthesis and mechanical behavior of nanostructured materials via cryomilling,” Prog. Mater. Sci., vol. 51, no. 1, pp. 1–60, Jan. 2006.

    Article  Google Scholar 

  10. A. P. Newbery, B. Ahn, T. D. Topping, P. S. Pao, S. R. Nutt and E. J. Lavernia, “Large UFG Al alloy plates from cryomilling”, J. Mater. Proc. Tech., vol. 203 (1-3), pp. 37-45, 2008.

    Article  Google Scholar 

  11. G. Hardenbergstr, “Mechanical formation by mechanical attrition,” Nanostructured Mater., vol. 6, no. 95, pp. 33–42, 1995.

    Google Scholar 

  12. R. W. Hayes, P. B. Berbon, and R. S. Mishra, “Microstructure characterization and creep deformation of an Al-10 wt pct Ti-2 wt pct Cu nanocomposite,” Metall. Mater. Trans. A, vol. 35, pp. 3855–3861, 2004.

    Article  Google Scholar 

  13. T.J. Van Daam and C.C. Bampton: US Patent, The Boeing Company, Chicago, IL, 2008.

  14. O. Susegg, E. Hellum, A. Olsen and M. Luton, “An electron microscopy study of dispersoids in cryomilled ODS-materials,” Micron Microsc. Acta, vol. 23, no. 1/2, pp. 223–224, 1992.

    Article  Google Scholar 

  15. Y. Li, W. Liu, V. Ortalan, W. F. Li, Z. Zhang, R. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “HRTEM and EELS study of aluminum nitride in nanostructured Al 5083/B4C processed via cryomilling,” Acta Mater., vol. 58, no. 5, pp. 1732–1740, Mar. 2010.

    Article  Google Scholar 

  16. F. Tang, C.P. Liao, B. Ahn, S.R. Nutt and J.M. Schoenung: Powder Metall., 2007, vol. 50(4), pp. 307–12.

    Article  Google Scholar 

  17. K. M. Youssef, R. O. Scattergood, K. Linga Murty, and C. C. Koch, “Ultratough nanocrystalline copper with a narrow grain size distribution,” Appl. Phys. Lett., vol. 85, no. 6, p. 929, 2004.

    Article  Google Scholar 

  18. K. . Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys,” Acta Mater., vol. 51, no. 19, pp. 5743–5774, Nov. 2003.

    Article  Google Scholar 

  19. E. Ma, “Instabilities and ductility of nanocrystalline and ultrafine-grained metals,” Scr. Mater., vol. 49, no. 7, pp. 663–668, Oct. 2003.

    Article  Google Scholar 

  20. P.G. Sanders, J.A. Eastman, and J.R. Weertman: Acta Mater., 1997, vol. 45(10), pp. 4019–25.

    Article  Google Scholar 

  21. Y. Wang, M. Chen, F. Zhou, and E. Ma, “High tensile ductility in a nanostructured metal.,” Nature, vol. 419, no. 6910, pp. 912–5, Oct. 2002.

    Article  Google Scholar 

  22. G. J. Fan, H. Choo, P. K. Liaw, and E. J. Lavernia, “Plastic deformation and fracture of ultrafine-grained Al–Mg alloys with a bimodal grain size distribution,” Acta Mater., vol. 54, no. 7, pp. 1759–1766, Apr. 2006.

    Article  Google Scholar 

  23. Z. Lee, V. Radmilovic, B. Ahn, E. J. Lavernia, and S. R. Nutt, “Tensile deformation and fracture mechanism of bulk bimodal ultrafine-grained Al-Mg alloy,” Metall. Mater. Trans. A, vol. 41, no. 4, pp. 795–801, Oct. 2009.

    Google Scholar 

  24. L. Jiang, K. Ma, H. Yang, M. Li, E. J. Lavernia, and J. M. Schoenung, “The microstructural design of trimodal aluminum composites”, JOM, vol. 66, no. 6, pp. 898-908, 2014.

    Article  Google Scholar 

  25. Y. Li, Y. H. Zhao, V. Ortalan, W. Liu, Z. H. Zhang, R. G. Vogt, N. D. Browning, E. J. Lavernia, and J. M. Schoenung, “Investigation of aluminum-based nanocomposites with ultra-high strength,” Mater. Sci. Eng. A, vol. 527, no. 1–2, pp. 305–316, Dec. 2009.

    Article  Google Scholar 

  26. K.M. Reddy, P. Liu, A. Hirata, T. Fujita, and M.W. Chen: Nat. Commun., 2013, vol. 4, p. 2483.

    Article  Google Scholar 

  27. Z. Zhang, T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia, “Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles,” Scr. Mater., vol. 65, no. 8, pp. 652–655, Oct. 2011.

    Article  Google Scholar 

  28. Z. Zhang, S. Dallek, R. Vogt, Y. Li, T. D. Topping, Y. Zhou, J. M. Schoenung, and E. J. Lavernia, “Degassing behavior of nanostructured Al and its composites,” Metall. Mater. Trans. A, vol. 41, no. 2, pp. 532–541, Nov. 2009.

    Google Scholar 

  29. J.R. Davis: Properties and Selection: Nonferrous Alloys and Special Purpose Materials, 1990, ASM International, Metals Park, vol. 2.

  30. P. W. Trimby, “Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope.,” Ultramicroscopy, vol. 120, pp. 16–24, Sep. 2012.

    Article  Google Scholar 

  31. P. W. Trimby, Y. Cao, Z. Chen, S. Han, K. J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J. T. Wang, J. Wheeler, and J. M. Cairney, “Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope,” Acta Mater., vol. 62, pp. 69–80, Jan. 2014.

    Article  Google Scholar 

  32. Y. Zhang, T. D. Topping, E. J. Lavernia, and S. R. Nutt, “Dynamic micro-Strain analysis of ultrafine-grained aluminum magnesium alloy using digital image correlation,” Metall. Mater. Trans. A, vol. 45, no. 1, pp. 47–54, May 2013.

    Google Scholar 

  33. Y. J. Li, W. Z. Zhang, and K. Marthinsen, “Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy,” Acta Mater., vol. 60, no. 17, pp. 5963–5974, Oct. 2012.

    Article  Google Scholar 

  34. G. Lucadamo, N. Y. C. Yang, C. S. Marchi, and E. J. Lavernia, “Microstructure characterization in cryomilled Al 5083,” Mater. Sci. Eng. A, vol. 430, no. 1–2, pp. 230–241, Aug. 2006.

    Article  Google Scholar 

  35. T. D. Topping, B. Ahn, Y. Li, S. R. Nutt, and E. J. Lavernia, “Influence of process parameters on the mechanical behavior of an ultrafine-grained Al alloy,” Metall. Mater. Trans. A, vol. 43, no. 2, pp. 505–519, Aug. 2011.

    Google Scholar 

  36. J. Ye, B. Q. Han, Z. Lee, B. Ahn, S. R. Nutt, and J. M. Schoenung, “A tri-modal aluminum based composite with super-high strength,” Scr. Mater., vol. 53, no. 5, pp. 481–486, Sep. 2005.

    Article  Google Scholar 

  37. E. O. Hall, “The deformation and ageing of mild steel: III discussion of results,” Proc. Phys. Soc. London, vol. 64, no. 381, pp. 747–753, 1951.

    Article  Google Scholar 

  38. Petch, N.J., “The cleavage Strength of Polycrystals,” Journal of the Iron and Steel Institute, 1953. 174(1): p. 25-28.

    Google Scholar 

  39. K. Peng, W. Chen, H. Zhang, and K.-W. Qian, “Features of dynamic strain aging in high strength Al-Zn-Mg-Cu alloy,” Mater. Sci. Eng. A, vol. 234–236, pp. 138–141, Aug. 1997.

    Article  Google Scholar 

  40. F. Tang and J. M. Schoenung, “Strain softening in nanocrystalline or ultrafine-grained metals: A mechanistic explanation,” Mater. Sci. Eng. A, vol. 493, no. 1–2, pp. 101–103, Oct. 2008.

    Article  Google Scholar 

  41. T.D. Topping and E.J. Lavernia: 13th International Conference on Aluminum Alloys, John Wiley & Sons, Inc., Hoboken, NJ, 2012.

  42. H. Yang, T.D. Topping, K. Wehage, L. Jiang, E.J. Lavernia, and J.M. Schoenung: Mater. Sci. Eng. A. DOI:10.1016/j.msea.2014.07.079.

  43. S. R. Nutt and J. M. Duva, “Failure in Al-SiC composites,” Scr. Metall., vol. 20, no. 7, p. 1055, 1986.

    Article  Google Scholar 

  44. Y.H. Zhao, Y.Z. Guo, Q. Wei, T.D. Topping, A.M. Dangelewicz, Y.T. Zhu, T.G. Langdon, and E.J. Lavernia: Mater. Sci. Eng. A, 2009, vol. 525(1–2), pp. 68–77.

    Article  Google Scholar 

  45. B. Ahn, E.J. Lavernia, and S.R. Nutt, “Dynamic observations of deformation in an ultrafine-grained Al-Mg alloy with bimodal grain structure”, J. Mater. Sci., vol. 43, pp. 7403, 2008.

    Article  Google Scholar 

  46. Z. Lee, D. B. Witkin, V. Radmilovic, E. J. Lavernia, and S. R. Nutt, “Bimodal microstructure and deformation of cryomilled bulk nanocrystalline Al–7.5Mg alloy,” Mater. Sci. Eng. A, vol. 410–411, pp. 462–467, Nov. 2005.

    Article  Google Scholar 

  47. A.P. Newbery, S.R. Nutt, and E.J. Lavernia: J. Miner. Met. Mater. Soc., 2006, vol. 58, pp. 56–61.

    Article  Google Scholar 

  48. D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, and W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, vol. 451, no. 7182, pp. 1085–9, Feb. 2008.

    Article  Google Scholar 

  49. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Chapter 8. Wiley, New York, 1996.

    Google Scholar 

  50. P.S. Pao, H.N. Jones, and C.R. Feng: Mater. Res. Soc. Symp. Proc., 2004, vol. 791, p. Q1.8.1.

Download references

Acknowledgments

The authors gratefully acknowledge J. Curulli and M. Mecklenburg for their valuable advice. The images and data used in this article were generated at the Center for Electron Microscopy and Microanalysis (CEMMA), University of Southern California. The authors wish to acknowledge the financial support provided by the Office of Naval Research under the guidance of Rod Peterson and Bill Golumbfskie (ONR Contract N00014-12-C-0241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzheng Zhang.

Additional information

Manuscript submitted August 27, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Topping, T.D., Yang, H. et al. Micro-strain Evolution and Toughening Mechanisms in a Trimodal Al-Based Metal Matrix Composite. Metall Mater Trans A 46, 1196–1204 (2015). https://doi.org/10.1007/s11661-014-2729-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2729-8

Keywords

Navigation