Skip to main content
Log in

Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A Rayleigh number-based criterion is developed for predicting the formation of A-segregates in steel castings and ingots. The criterion is calibrated using available experimental data for ingots involving 27 different steel compositions. The critical Rayleigh number above which A-segregates can be expected to form is found to be 17 ± 8. The primary source of uncertainty in this critical value is the dendrite arm spacing. The Rayleigh number criterion of the current study is implemented in a casting simulation code and used to predict A-segregates in three case studies involving steel sand castings. By comparing the predictions with observations made in the actual castings, the Rayleigh number criterion is shown to correctly predict the regions where no A-segregates form. However, the regions where A-segregates do form are somewhat over-predicted. Based on the results of the three case studies, the primary reason for this over-prediction is persumed to be the presence of a central zone of equiaxed grains in the casting sections. A-segregates do not form when the grain structure is equiaxed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.J. Moore and N.A. Shah: Int. Mat. Rev., 1983, vol. 28, pp. 338–56.

    Article  CAS  Google Scholar 

  2. S.M. Copley, A. F. Giamei, S. M. Johnson and M. F. Hornbecker: Metall. Trans., 1970, vol. 1, pp. 2193–2204.

    Article  CAS  Google Scholar 

  3. T.M. Pollock and W.H. Murphy: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1081–94.

    Article  Google Scholar 

  4. K. Suzuki and T. Miyamoto: Trans. Iron Steel Inst. Jpn, 1978, vol. 18, pp. 80–89.

    CAS  Google Scholar 

  5. H. Yamada, T. Sakurai and T. Takenouchi: J. Iron Steel Inst. Jpn, vol. 75, 1989, pp. 97–104.

    CAS  Google Scholar 

  6. P. Nandapurkar, D.R. Poirier, J.C. Heinrich, and S. Felicelli: Metall. Trans. B, 1989, vol. 20B, pp. 711–21.

    Article  CAS  Google Scholar 

  7. J.C. Heinrich, S. Felicelli, P. Nandapurkar, and D.R. Poirier: Metall. Trans. B, 1989, vol. 20B, pp. 883–91.

    Article  CAS  Google Scholar 

  8. M.G. Worster: J. Fluid Mech., 1992, vol. 237, pp. 649–69.

    Article  CAS  Google Scholar 

  9. G. Amberg and G.M. Homsy: J. Fluid Mech., 1993, vol. 252, pp. 79–98.

    Article  CAS  Google Scholar 

  10. D.M. Anderson and M.G. Worster: J. Fluid Mech., 1995, vol. 252, pp. 307–31.

    Article  Google Scholar 

  11. M.G. Worster: Annu. Rev. Fluid Mech., 1997, vol 29, pp. 91–122.

    Article  Google Scholar 

  12. J.R. Sarazin and A. Hellawell: Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    CAS  Google Scholar 

  13. S. Tait and C. Jaupart: J. Geophys. Res., 1992, vol. 97, pp. 6735–56.

    Article  CAS  Google Scholar 

  14. M.I. Bergman, D.R. Fearn, J. Bloxham, and M.C. Shannon: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 859–66.

    CAS  Google Scholar 

  15. C. Beckermann, J.P. Gu, and W.J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2545–57.

    Article  CAS  Google Scholar 

  16. W. Yang, W. Chen, K. Chang, S. Mannan and J. deBarbadilli: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 397–405.

    Article  CAS  Google Scholar 

  17. J.C. Ramirez and C. Beckermann: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1525–36.

    Article  CAS  Google Scholar 

  18. S.N. Tewari and R. Tiwari: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2365–76.

    Article  CAS  Google Scholar 

  19. L. Yuan, P.D. Lee: Acta Materialia, 2012, vol. 60, pp. 4917–26.

    Article  CAS  Google Scholar 

  20. M.C. Schneider and C. Beckermann, Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    Article  CAS  Google Scholar 

  21. C. Beckermann, Int. Mater. Rev., 2002, vol. 47, pp. 243–61.

    Article  CAS  Google Scholar 

  22. J. Guo and C. Beckermann, Numerical Heat Transfer, Part A: Applications, 2003, vol. 44, pp. 559–76.

    Article  Google Scholar 

  23. K.D. Carlson C. Beckermann: Int. J. Cast Metals Research, 2012, vol. 25, pp. 75–92.

    Article  CAS  Google Scholar 

  24. J.A. Dantzig and M. Rappaz: Solidification, 1st ed., EPFL Press, Lausanne, 2009, pp. 127–32.

    Book  Google Scholar 

  25. M.C. Schneider, J.P. Gu, C. Beckermann, W.J. Boettinger, and U.R. Kattner: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1517–31.

    Article  CAS  Google Scholar 

  26. C. Cicutti and R. Boeri: Scripta Mater., 2001, vol. 45, pp. 1455-60.

    Article  CAS  Google Scholar 

  27. M. Imagumbai: ISIJ Int., 1994, vol. 34, no. 11, pp. 896-905.

    Article  CAS  Google Scholar 

  28. M. Imagumbai: ISIJ Int., 1994, vol. 34, no. 12, pp. 986–91.

    Article  CAS  Google Scholar 

  29. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. de Groh III: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 111–19.

    Article  CAS  Google Scholar 

  30. N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, and J.Ph. Schille: JOM, 2003, vol. 55, pp. 60–65.

    Article  CAS  Google Scholar 

  31. M. El-Bealy, B.G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 689–93.

    Article  CAS  Google Scholar 

  32. M.A. Taha, H. Jacobi, M. Imagumbai and K. Schwerdtfeger: Metall. Trans. A, 1982, vol. 13A, pp. 2182–2241.

    Google Scholar 

  33. H. Jacobi and K. Schwerdtfeger: Metall. Trans. A, 1976, vol. 7A, pp. 811–20.

    CAS  Google Scholar 

  34. M.C. Flemings, D.R. Poirier, R.V. Barone, and H.D.Brody: J. Iron Steel Inst., 1970, vol. 208, pp. 371–81.

    CAS  Google Scholar 

  35. G. Wei and Z. Miao-Young: J. Iron Steel Res. Int.,2009, vol. 16, pp. 17–21.

    Google Scholar 

  36. A. Suzuki and Y. Nagaoka: J. Jpn. Inst. Met., 1969, vol. 33, pp. 658-63.

    Google Scholar 

  37. M. Wolf: PhD Thesis, EPFL, Lausanne, 1978.

  38. J. Miettinen, S. Louhenkilpi, H. Kytönen and J. Laine: Math. Comp. Sim., 2010, vol. 80, pp. 1536–50.

    Article  Google Scholar 

  39. Y.M. Won and B.G. Thomas: Metall. Mater. Trans. A, 2000,vol. 32A, pp. 1755–67.

    Google Scholar 

  40. MAGMASOFT® v4.6, Magma GmbH, Aachen, Germany.

  41. W.T. Adams, and K.W. Murphy: AFS Trans., 1980, vol. 88, pp. 389–404.

    CAS  Google Scholar 

  42. K.D. Carlson and C. Beckermann: 64th Steel Founders Society of America Technical and Operating Conference, Paper No. 3.2. Chicago, IL, 2010.

    Google Scholar 

  43. P. Kotas and J.H. Hattel: Mater. Sci. Technol., 2012, vol. 28, pp. 872–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Beckermann.

Additional information

Manuscript submitted December 3, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rad, M.T., Kotas, P. & Beckermann, C. Rayleigh Number Criterion for Formation of A-Segregates in Steel Castings and Ingots. Metall Mater Trans A 44, 4266–4281 (2013). https://doi.org/10.1007/s11661-013-1761-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1761-4

Keywords

Navigation