Skip to main content

Advertisement

Log in

Effect of Niobium on the Ferrite Continuous-Cooling-Transformation (CCT) Curve of Ultrahigh-Thickness Cr-Mo Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Pressure vessels made for petrochemical and power plants using Cr-Mo steel must be thick (≥400 mm) and have high tensile strength (≥600 MPa). However, the tensile strength in the middle portion of the vessel is very low as a result of ferrite formation. Therefore, research was performed to study the ferrite transformation that occurs in the middle portion of high-thickness Cr-Mo steel when Nb is added to it. The ferrite-formation start time of the continuous-cooling-transformation (CCT) curve decreased with an increase in Nb content until the latter reached 0.05 pct. On cooling from the austenitizing temperature, some of the NbC present at the austenitizing temperature of 1203 K (930 °C) goes into austenite solution in the temperature range of 1173 K to 1073 K (900 °C to 800 °C). However, the ferrite curve shifted to the left for the alloy containing 0.075 pct Nb. It is postulated that the surplus NbC could act as ferrite nucleation sites despite the lower cooling rate. As a result, the hardenability improved in the order of the following Nb content: 0.05 pct, 0.025 pct, 0 pct, and 0.075 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Murakami, T. Nomura, and J. Watanabe: ASTM ATP, 1982, vol. 755, no. 1, p. 383.

    CAS  Google Scholar 

  2. M.L. Shaw, T.B. Cox, and W.C. Leslie: J. Mater. Energ. Syst., 1987, vol. 8A, pp. 347-55.

    Article  Google Scholar 

  3. T. Wada and T.B. Cox: ASME Publication MPC, 1984, vol. 21, p. 77.

    CAS  Google Scholar 

  4. S.J. Manganello: ASME Publication MPC, 1982, vol. 18, p. 153.

    CAS  Google Scholar 

  5. J.A. Todd, D.W. Chung, and E.R. Park: ASME Publication MPC, 1982, vol. 18, p. 179.

    CAS  Google Scholar 

  6. I. Kozazu, H. Suzuki, M. Yamada, and H. Tagawa: ASME Publication MPC, 1984, vol. 21, p. 53.

    Google Scholar 

  7. R.J. Kar and J.A. Todd: ASTM-STP, 1982, vol. 755, pp. 228-52.

    CAS  Google Scholar 

  8. T. Ishiguro, Y. Murakami, K. Ohnishi, and J. Watanabe: ASTM-STP, 1982, vol. 755, p. 129-76.

    Google Scholar 

  9. F. Masuyama: ISIJ Int., 2001, vol. 41, no. 6, pp. 612-25.

    Article  CAS  Google Scholar 

  10. Anonymous: The Japan Steel Works, Report No. MR83-3, 1983.

  11. R.O. Ritchie, E.R. Parker, P.N. Spencer, and J.A. Todd: J. Mater. Energ. Syst., 1984, vol. 6A, pp. 151-62.

    Article  Google Scholar 

  12. R.L. Bodnar, T. Ohhashi, and R.I. Jaffee: Metall. Trans. A, 1989, vol. 20A, p. 1445.

    CAS  Google Scholar 

  13. K. Miyata, M. Igarashi, and Y. Sawaragi: ISIJ Int., 1999, vol. 39A, pp. 947-54.

    Article  Google Scholar 

  14. R.L. Klueh and R.W. Swindeman: Metall. Trans. A, 1986, vol. 17A, pp. 1027-34.

    CAS  Google Scholar 

  15. P. Ho, D.F. Mitchell, and M.J. Graham: Appl. Surf. Sci., 1983, vol. 15A, pp. 108-19.

    Google Scholar 

  16. T. Wada and W.C. Hagel: Metall. Trans. A, 1976, vol. 7A, pp. 1419-26.

    CAS  Google Scholar 

  17. J. Yu and C.J. McMahon: Metall. Trans. A, 1980, vol. 11A, pp. 277-300.

    CAS  Google Scholar 

  18. S. Sato, S. Matsui, T. Enami, and T. Tobe: ASTM-STP, 1982, vol. 755, pp. 363-82.

    CAS  Google Scholar 

  19. H.R. Lin: J. Mater. Sci., 1997, vol. 32A, pp. 5005-10.

    Article  Google Scholar 

  20. R.J. Mostert and G.T. Van Rooyen: Metall. Trans. A, 1984, vol. 15A, p. 2185.

    CAS  Google Scholar 

  21. V. Raghavan: J. Phase Equil., 2003, vol. 24, pp. 57-61.

    CAS  Google Scholar 

  22. C. Fossaert, G.I. Rees, T. Maurickx, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 21-30.

    Article  CAS  Google Scholar 

  23. G.I. Rees, J. Perdrix, T. Maurickx, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 194A, pp. 179-86.

    Google Scholar 

  24. F. Chun, F. Hong-Sheng, Z. Yan-Kang, and B. Bing-Zhe: J. Iron Steel Res. Int., 2010, vol. 17A, pp. 53-8.

    Google Scholar 

  25. R. Priestner and M.S. Bring: Metal Sci., 1973, vol. 7A, pp. 60-4.

    Article  Google Scholar 

  26. S. Kawaguchi, T. Hashimoto, I. Tamura, and Y. Ohtani: THERMEC, vol. 88, ISIJ, Tokyo, Japan, 1998, p. 330.

  27. M.H. Thomas and G.M. Michael: Proc. Int. Conf. on Solid-Solid Phase Transformations, TMS-AIME, Warrendale, PA, 1983, p. 469.

  28. H. Ohtsuka, M. Umemoto, and I. Tamura: THERMEC, vol. 88, ISIJ, Transformations, TMS-AIME, Warrendale, PA, 1983, p. 469.

  29. H. Niakana and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5410-4.

    Article  Google Scholar 

  30. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, U.K., 2002, pp. 93-117.

    Google Scholar 

  31. M. Tamura, H. Iida, H. Esaka, and K. Shinozuka: ISIJ Int., 2003, vol. 43, no. 11, pp. 1807-13.

    Article  CAS  Google Scholar 

  32. D. Séférian and E.E. Bishop: The Metallurgy of Welding, Chapman and Hall, London, U.K., 1962.

  33. D.D. Lundin, B.J. Kruse, and M.R. Pendly: Welding Research Council Bulletin 277, United Engineering Centre, New York, NY, 1982.

    Google Scholar 

  34. K.W. Andrews: J. Int. Steel Inst., 1965, vol. 203, p. 721.

    CAS  Google Scholar 

  35. V.K. Lakshmanan and J.S. Kirkaldy: Metall. Trans. A, 1984, vol. 15A, pp. 541-4.

    CAS  Google Scholar 

  36. W.G. Jung, Y. Kita, T. Tanaka, and Z. Morita: Trans. Jpn. Inst. Met., 1988, vol. 29, no. 9, pp. 718-26.

    CAS  Google Scholar 

  37. J. Moon and C. Lee: Acta Mater., 2009, vol. 57, pp. 2311-20.

    Article  CAS  Google Scholar 

  38. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagram, Academic Press Inc., New York, NY, 1970.

  39. N. Saunders and A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Pergamon Press, New York, NY, 1998.

Download references

Acknowledgment

This work was supported by grants-in-aid for the National Core Research Center Program from MOST/KOSEF (No. R15-2006-022-02004-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungyun Kang.

Additional information

Manuscript submitted December 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Na, H., Kim, B. et al. Effect of Niobium on the Ferrite Continuous-Cooling-Transformation (CCT) Curve of Ultrahigh-Thickness Cr-Mo Steel. Metall Mater Trans A 44, 2523–2532 (2013). https://doi.org/10.1007/s11661-013-1616-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1616-z

Keywords

Navigation