Skip to main content
Log in

Texture Evolution and Residual Stress Relaxation in a Cold-Rolled Al-Mg-Si-Cu Alloy Using Vibratory Stress Relief Technique

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Over the last half century, vibratory stress relief (VSR) has come to be recognized as a technique with several unique benefits, and it has found applications in various industries. However, the mechanisms involved remain unclear, and the textures corresponding to residual stress relaxation were rarely reported in the existing literature. The purpose of this study is to discuss the texture evolution and residual stress relaxation in a cold-rolled Al-Mg-Si-Cu alloy using VSR technique. All the residual stress measurements were performed using a standard X-ray diffraction (XRD) technique. Measurement of texture was performed on the specimen surface using conventional pole figure (PF) as well as orientation distribution functions (ODFs) methods. Results indicate that the VSR technique can be applied to weaken the α-fiber and cause the residual stress of the rolled samples to gradually approach uniformity in XRD analysis. The best relaxation of the compressive residual stress reaches about 52.6 pct, but relaxation of the tensile residual stress is less than 10 pct. After the VSR process for 20 minutes, the texture intensities of PFs (200) and (220) as compared to those in nonvibration are nearly homogeneously distributed. Furthermore, the texture of (111) PF perpendicular to normal direction (ND), which is affected by vibratory force parallel to ND, almost disappears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.C. Sun, Y.H. Sun, and R.K. Wang: Mater. Lett., 2004, vol. 58, pp. 1396-99.

    Article  CAS  Google Scholar 

  2. D. Rao, J. Ge, and L. Chen: J. Manuf. Sci. Eng., 2004, vol. 126, pp. 388-91.

    Article  Google Scholar 

  3. C.W. Kuo, S.M. Yang, J.H. Chen, G.H. Lai, Y.C. Chen, Y.T. Chang and W. Wu: Mater. Lett., 2008, vol. 49(3), pp. 688-90.

    CAS  Google Scholar 

  4. S. Kwofie: Mater. Sci. Eng. A, 2009, vol. 516, pp. 154-61.

    Article  Google Scholar 

  5. G. Gnirss: Indian Weld. J., 1990, vol. 22, pp. 11-16.

    Google Scholar 

  6. R. Dawson and D. G. Moffat. J: Eng. Mater. Technol. Trans. ASME., 1980, vol. 102, pp. 169-76.

    Article  Google Scholar 

  7. G. Hebel, Jr.: Met. Prog., 1985, vol. 128, pp. 51-55.

    Google Scholar 

  8. E. Klotzbucher and H. Kraft: Residual Stresses in Science and Technology, 1st ed., DGM Metallurgy Information, 1987, p. 959.

  9. J.T. Maximo, G.V. Dunchev, and I.N. Mitev: J. Constr. Steel Res.., 2009, vol. 65, no. 3, pp. 909-17.

    Article  Google Scholar 

  10. J. Liu and J.G. Morris: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 951-66.

    Article  CAS  Google Scholar 

  11. O. Engler and J. Hirsch: Mater. Sci. Eng. A, 2002, vol. 336, pp. 249-62.

    Article  Google Scholar 

  12. S.C. Xu, L.D. Wang, P.T. Zhao, W.L. Li, Z.W. Xue, and W.D. Fei: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3243-48.

    Article  Google Scholar 

  13. Y. Kaneno, I. Nakaaki, and T. Takasugi (2002). Intermetallics, 10, 693-700.

    Article  CAS  Google Scholar 

  14. V. Randle and O. Engler: Introduction to Texture Analysis, 2nd ed., CRC Press, Boca Raton, 2010, pp. 149–50.

  15. C.S.T. Chang and B.J. Duggan: Acta Mater., 2010, vol. 58, pp. 476-89.

    Article  CAS  Google Scholar 

  16. Y. Takayama and J. A. Szpunar: Mater. Trans., 2004, vol. 45, no. 7, pp. 2316-25.

    Article  CAS  Google Scholar 

  17. Y.L. Deng, L. Wan, Y. Zhang, and X.M. Zhang: J. Alloys Compd., 2010, vol. 498, pp. 88-94.

    Article  CAS  Google Scholar 

  18. A.L. Etter, T. Baudin, M.H. Mathon, W. Swiatnicki,and R. Penelle: Scripta Mater., 2006, vol. 54, pp. 683-88.

    Article  CAS  Google Scholar 

  19. J.M. Song, T.S. Lui, J.H. Horng, L.H. Chen, and T.F. Chen: Scripta Mater., 2004, vol. 51, pp. 1153-57.

    Article  CAS  Google Scholar 

  20. C.W. Kuo, C.M. Lin, G.H. Lai, Y.C. Chen, Y.T. Chang, and W. Wu: Mater. Trans., 2007, vol. 48 (9), pp. 2319–23.

  21. P. Juijerm, I. Altenberger, and B. Scholtes: Mater. Sci. Eng. A, 2006, vol. 426, pp. 4-10.

    Article  Google Scholar 

  22. H. Holzapfel, V. Schulze, O. Vöhringer, and E. Macherauch: Mater. Sci. Eng. A, 1998, vol. 248, pp. 9-18.

    Article  Google Scholar 

  23. D. Rao, D. Wang, L. Chen, and C. Ni: Int. J. Fatigue, 2007, vol. 29, pp. 192–96.

  24. Z. A. Yang and Z. G. Wang: Mater. Trans., 1991, vol. 142, pp. 25-33.

    Google Scholar 

  25. Z.-L. Zhan and J. Tong: Mech. Mater., 2007, vol. 39, pp. 73-80.

    Article  Google Scholar 

  26. H.D. Chandler and S. Kwofie: Int. J. Fatigue, 2005, vol. 27, pp. 541-45.

    Article  CAS  Google Scholar 

  27. H.D. Chandler: Acta Metall, 1984, vol. 32, no. 8, pp. 1253–57.

    Article  CAS  Google Scholar 

  28. D. J. Buchanan and R. John: Scripta Mater., 2008, vol. 59, pp. 286-89.

    Article  CAS  Google Scholar 

  29. I. Nikitin and M. Besel: Scripta Mater., 2008, vol. 58, pp. 239-42.

    Article  CAS  Google Scholar 

  30. B.D. Cullity: Elements of X-Ray Diffraction, 2nd ed., Addison Wesley, London, 1978, pp. 285–92.

  31. B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall, Upper Saddle River, 2001, pp. 446–50.

  32. X. Huang, K. Suzuki, and Y. Chino: Mater. Sci. Eng. A, 2012, vol. 538, pp. 281-87.

    Article  CAS  Google Scholar 

  33. U.F. Kocks, C.N. Tomé, and H.R. Wenk: Texture and Anisotropy, 1st ed., Cambridge University Press, Cambridge, 1998.

Download references

Acknowledgment

This study was partially supported by the National Science Council, Taiwan, R.O.C., under the project NSC 99-2221-E-005-033-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weite Wu.

Additional information

Manuscript submitted May 14, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JS., Hsieh, CC., Lin, CM. et al. Texture Evolution and Residual Stress Relaxation in a Cold-Rolled Al-Mg-Si-Cu Alloy Using Vibratory Stress Relief Technique. Metall Mater Trans A 44, 806–818 (2013). https://doi.org/10.1007/s11661-012-1450-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1450-8

Keywords

Navigation