Skip to main content
Log in

Strain Energy During Mechanical Milling: Part I. Mathematical Modeling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, we formulate a mathematical model that can be implemented to calculate the amount of strain energy both introduced to (U i) and stored in (U s) metal powders during mechanical milling. The theoretical analysis presented in this study proposes that the strain energy is primarily induced by normal and shear strains, and moreover, that the contributions from torsion can be neglected. This theoretical framework was implemented to evaluate the influence of various mechanical milling processing parameters on U i and U s. The calculated results show that the magnitude of U i increases with increases in the following processing parameters: attritor diameter, impeller’s rotational frequency, and ball-to-powder mass ratio, and the magnitude of U i increases with a decrease in diameter of the milling media. The percentage of the shear strains’ contribution to the total U i is insensitive to the mechanical milling processing parameters, varying within the range of 35 pct to 42 pct. The calculated magnitude of U s ranges from a few to a few tens of joules per gram, which is three to four orders of magnitude lower than that of the calculated U i. Although with respect to the mechanical milling processing parameters, the calculated U s has trends similar to those for U i, the changing rates of U s are much lower than those for U i.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

ball-to-powder mass ratio

F :

impeller’s rotational frequency

f :

frequency of collision between balls

K, n :

shear work-hardening factor and index, respectively

m :

mass of powders mechanically milled

N, M :

total number and mass of milling balls

R :

radius of the milling vessel

r E, h, V E :

radius, height, and volume of cylindrical entrapped powders, respectively

r B, ρ B, and E B :

radius, density, and Young’s modulus of balls, respectively

t :

milling time

t c :

duration of an individual collision

\( u_{{{\text{E}},\sigma_{z} }} ,\,u_{{{\text{E}},\sigma_{r} }} \) :

strain energy introduced to powders during an individual collision by σ z and σ r , respectively

u s :

shear strain energy introduced to powders during an individual collision

U i :

strain energy introduced to powders per unit mass

U s :

strain energy stored in powders per unit mass

V m :

volume of ball milling

x :

distance away from the rotational center

Y :

uniaxial tensile yield strength of powders

ε :

normal strain of entrapped powders along the thickness reduction direction

σ z , σ r , σ θ :

three-dimensional compressive stresses in a small unit cell from the cylinder of entrapped powder aggregate

γ :

shear strain

λ :

average free path between balls

μ :

coefficient of friction between powder and ball

ρ P :

powder density

Δh :

dimensional reduction of entrapped powders during collision

Δv :

two colliding balls’ velocity difference

Δv n, Δv s :

components of the two colliding balls’ velocity difference parallel and perpendicular to the direction joining the two balls’ centers, respectively

Δω :

two colliding balls’ rotational speed difference

v max :

maximum velocity of the balls at x

\( \overline{\Updelta v} (x) \) :

average velocity difference between the balls at x

\( \overline{\overline{\Updelta v}} \) :

overall average velocity difference of all balls

\( \overline{\overline{{\Updelta v_{n} }}} ,\,\overline{\overline{{\Updelta v_{s} }}} \) :

normal and shear components of overall average velocity difference

\( \overline{\overline{{\Updelta v_{sx} }}} ,\,\overline{\overline{{\Updelta v_{sy} }}} \) :

subcomponents of shear component of overall average velocity difference along X and Y axis directions

χ :

the ratio of the strain energy stored in powders per unit mass to the strain energy introduced to powders per unit mass

References

  1. V.M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157–64.

    Article  Google Scholar 

  2. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45, pp. 103–89.

    Article  CAS  Google Scholar 

  3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  4. T. Sakai, A. Belyakov, and H. Miura: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2206–14.

    Article  CAS  Google Scholar 

  5. C.C. Koch: Nanostructured Mater., 1997, vol. 9, pp. 13–22.

    Article  CAS  Google Scholar 

  6. H. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Metall. Trans. A, 1990, vol. 21A, pp. 2333–37.

    CAS  Google Scholar 

  7. L. Lu and M.O. Lai: Mechanical Alloying, Kluwer Academic Publishers, Norwell, MA, 1998.

  8. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  9. J. Eckert, J.C. Holzer, C.E. Krill III, and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1751–61.

  10. D.L. Zhang: Progr. Mater. Sci., 2004, vol. 49, pp. 537–60.

    Article  CAS  Google Scholar 

  11. M. Magini and A. Iasonna: Mater. Trans. JIM, 1995, vol. 36, pp. 123–33.

    CAS  Google Scholar 

  12. A. Iasonna and M. Magini: Acta Mater., 1996, vol. 44, pp. 1109–17.

    Article  CAS  Google Scholar 

  13. M. Magini, A. Iasonna, and F. Padella: Scripta. Mater., 1996, vol. 34, pp. 13–19.

    Article  CAS  Google Scholar 

  14. D. Maurice and T.H. Courtney: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1973–79.

    Article  CAS  Google Scholar 

  15. B. Aikin and T.H. Courtney: Metall. Trans. A, 1993, vol. 24A, pp. 2465–71.

    CAS  Google Scholar 

  16. M. Abdellaoui and E. Gaffet: Acta Mater., 1996, vol. 44, pp. 725–34.

    Article  CAS  Google Scholar 

  17. M. Abdellaoui and E. Gaffet: Acta Metall. Mater., 1995, vol. 43, pp. 1087–98.

    Article  CAS  Google Scholar 

  18. R. Watanabe, H. Hashimoto, and G.G. Lee: Mater. Trans. JIM, 1995, vol. 36, pp. 102–09.

    CAS  Google Scholar 

  19. E.V. Shelekhov, V.V. Tcherdyntsev, L.Y. Pustov, S.D. Kaloshkin, and I.A. Tomilin: Mater. Sci. Forum, 2000, vols. 343–343, pp. 603–08.

  20. P. Le Brun, L. Froyen, and L. Delaey: Mater. Sci. Eng. A, 1993, vol. 161, pp. 75–82.

  21. M.P. Dallimore and P.G. McCormick: Mater. Trans. JIM, 1996, vol. 37, pp. 1091–98.

    CAS  Google Scholar 

  22. D.R. Maurice and T.H. Courtney: Metall. Trans. A, 1990, vol. 21A, pp. 289–303.

    CAS  Google Scholar 

  23. J.N. Harris: Mechanical Working of Metals, Pergamon Press, Oxford, U.K., 1983.

    Google Scholar 

  24. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Boston, MA, 2004.

  25. F.A. Mohamed: Acta Mater., 2003, vol. 51, pp. 4107–19.

    Article  CAS  Google Scholar 

  26. D. Witkin and E.J. Lavernia: Progr. Mater. Sci., 2006, vol. 51, pp. 1–60.

    Article  CAS  Google Scholar 

  27. D. Witkin, B.Q. Han, and E.J. Lavernia: J. Mater. Res., 2005, vol. 20, pp. 2117–26.

    Article  CAS  Google Scholar 

  28. G. Lucadamo, N.Y.C. Yang, C.S. Marchi, and E.J. Lavernia: Mater. Sci. Eng. A, 2006, vol. 430, pp. 230–41.

    Article  Google Scholar 

  29. D. Witkin, B.Q. Han, and E.J. Lavernia: J. Mater. Eng. Perform., 2005, vol. 14, pp. 519–27.

    Article  CAS  Google Scholar 

  30. E.J. Lavernia, B.Q. Han, and J.M. Schoenung: Mater. Sci. Eng. A, 2008, vol. 493, pp. 207–14.

    Article  Google Scholar 

  31. Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2010, vol. 58, pp. 1732–40.

    Article  CAS  Google Scholar 

  32. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 938–44.

    Article  CAS  Google Scholar 

  33. J.R. Davis: Aluminum and Aluminum Alloys, ASM International, Materials Park, OH, 1993.

    Google Scholar 

  34. J.R. Davis: Stainless Steels, ASM International, Materials Park, OH, 1994.

    Google Scholar 

  35. A.D. Sarkar: Friction and Wear, Academic Press, New York, NY, 1980.

    Google Scholar 

  36. A.P. Newbery, B. Ahn, T.D. Topping, P.S. Pao, S.R. Nutt, and E.J. Lavernia: J. Mater. Process. Tech., 2008, vol. 203, pp. 37–45.

    Article  CAS  Google Scholar 

  37. S. Cheng, J.A. Spencer, and W.W. Milligan: Acta Mater., 2003, vol. 51, pp. 4505–18.

    Article  CAS  Google Scholar 

  38. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777–91.

    Article  CAS  Google Scholar 

  39. W.Q. Cao, A. Godfrey, N. Hansen, and Q. Liu: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 204–14.

    Article  CAS  Google Scholar 

  40. F. Haessner and J. Schmidt: Acta Metall. Mater., 1993, vol. 41, pp. 1739–49.

    Article  CAS  Google Scholar 

  41. N.R. Bauld: Mechanics of Materials, PWS Publishers, Boston, MA, 1986.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the U.S. Army Research Laboratory Cooperative Agreement No. W911NF-08-2-0028. Y.J. Lin acknowledges the financial support from the One Hundred Talents Project of Hebei Province, China and the Research Program of Department of Education, Hebei Province, China (Project No. ZH2011111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojun Lin.

Additional information

Manuscript submitted October 4, 2011.

Appendices

Appendix A

1.1 The Strain Energy Contributed by the Normal Stresses σ z and σ r

A small unit cell is taken from the entrapped powder aggregate, which is subjected to three-dimensional compressive stresses σ z , σ r , and σ θ,[23] as shown in Figure 2. Assuming axisymmetric flow, ε r ε θ , where ε r and ε θ are normal strains corresponding to σ r and σ θ , respectively, and hence, σ r  = σ θ . Using the von Mises yield criterion, σ r  − σ z  = Y. According to Reference 23

$$ \sigma_{z} = Y\exp \left[ {\frac{2\mu }{h}(r_{\text{E}} - r)} \right] $$
(A1)

where r is the distance away from the center of the entrapped powder aggregate that is assumed as cylindrical geometry. The strain energy introduced by σ z is analyzed by considering a ring of r in the distance away from the center, dr in width and h in thickness. The work on the ring contributed by σ z is σ z  · 2πrdr · Δh. Therefore, the strain energy introduced to the entrapped powders by σ z can be expressed as

$$ u_{{{\text{E}},\sigma_{z} }} = \int_{0}^{{r_{E} }} {2\pi r\Updelta h\sigma_{z} dr} = 2\pi \Updelta hY\left\{ { - \frac{h}{2\mu }r\exp \left[ {\frac{2\mu }{h}\left( {r_{\text{E}} - r} \right)} \right] - \left( {\frac{h}{2\mu }} \right)^{2} \exp \left[ {\frac{2\mu }{h}\left( {r_{\text{E}} - r} \right)} \right]} \right\}_{0}^{{r_{{\text{E}}} }} = 2\pi \Updelta hY\left\{ { - \frac{h}{2\mu }r_{\text{E}} - \left( {\frac{h}{2\mu }} \right)^{2} + \left( {\frac{h}{2\mu }} \right)^{2} \exp \left( {\frac{2\mu }{h}r_{\text{E}} } \right)} \right\} $$
(A2)

The strain energy introduced by σ r is analyzed by considering the aforementioned ring. The elongation along radial direction per unit length is \( \sqrt {h/(h - \Updelta h)} - 1 \). Thus, the work on the ring contributed by σ r is \( \sigma_{r} \cdot 2\pi rh \cdot [\sqrt {h/(h - \Updelta h)} - 1]dr \), and the strain energy introduced by σ r can be evaluated

$$ u_{{{\rm E},\sigma_{r} }} = \int_{0}^{{r_{\text{E}} }} {2\pi rh} \left[ {\sqrt {h/(h - \Updelta h)} - 1} \right]\sigma_{r} dr = 2\pi hY\left[ {\sqrt {h/(h - \Updelta h)} - 1} \right]\left\{ { - \frac{h}{2\mu }r\exp \left[ {\frac{2\mu }{h}\left( {r_{\text{E}} - r} \right)} \right] - \left( {\frac{h}{2\mu }} \right)^{2} \exp \left[ {\frac{2\mu }{h}\left( {r_{\text{E}} - r} \right)} \right] - \frac{{r^{2} }}{2}} \right\}_{0}^{{r_{\text{E}} }} = 2\pi hY\left[ {\sqrt {h/(h - \Updelta h)} - 1} \right]\left\{ { - \frac{h}{2\mu }r_{\text{E}} - \left( {\frac{h}{2\mu }} \right)^{2} + \left( {\frac{h}{2\mu }} \right)^{2} \exp \left( {\frac{2\mu }{h}r_{\text{E}} } \right) - \frac{{r_{\text{E}}^{2} }}{2}} \right\} $$
(A3)

Appendix B

2.1 Analysis of Shear Strains during an Individual Collision Between Balls

A relationship between a principal normal strain of a point ε and the normal and shear strains of the point in a given orthogonal coordinate system ε x , ε y, ε z , γ xy  = γ yx , γ xz  = γ zx and γ yz  = γ zy is given by[41]

$$ \left. \begin{gathered} (\varepsilon_{x} - \varepsilon )l + \frac{1}{2}\gamma_{yx} m + \frac{1}{2}\gamma_{zx} n = 0 \hfill \\ (\varepsilon_{y} - \varepsilon )m + \frac{1}{2}\gamma_{xy} l + \frac{1}{2}\gamma_{zy} n = 0 \hfill \\ (\varepsilon_{z} - \varepsilon )n + \frac{1}{2}\gamma_{xz} l + \frac{1}{2}\gamma_{zy} m = 0 \hfill \\ \end{gathered} \right\} $$
(B1)

where l, m, and n are directional cosines of the principal normal strain (l 2 + m 2 + n 2 = 1). The shear strains can be obtained from Eq. [B1]:

$$ \left. \begin{gathered} \gamma_{xy} = \gamma_{yx} = (\varepsilon_{z} - \varepsilon )n^{2} /lm - (\varepsilon_{x} - \varepsilon )l/m - (\varepsilon_{y} - \varepsilon )m/l \hfill \\ \gamma_{yz} = \gamma_{zy} = (\varepsilon_{x} - \varepsilon )l^{2} /mn - (\varepsilon_{y} - \varepsilon )m/n - (\varepsilon_{z} - \varepsilon )n/m \hfill \\ \gamma_{xz} = \gamma_{zx} = (\varepsilon_{y} - \varepsilon )m^{2} /nl - (\varepsilon_{x} - \varepsilon )l/n - (\varepsilon_{z} - \varepsilon )n/l \hfill \\ \end{gathered} \right\} $$
(B2)

According to Eq. [8], normal strain is a function of properties of ball and powder, in addition to the component of the two balls’ velocity difference along the normal strain, which is described by

$$ \left. \begin{gathered} \varepsilon_{x} = 5.226C\Updelta v_{{{\text{n}}x}}^{0.8} \rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \hfill \\ \varepsilon_{y} = 5.226C\Updelta v_{{{\text{n}}y}}^{0.8} \rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \hfill \\ \varepsilon_{z} = 5.226C\Updelta v_{{{\text{n}}z}}^{0.8} \rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \hfill \\ \varepsilon_{p} = 5.226C\Updelta v_{{{\text{n}}p}}^{0.8} \rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \hfill \\ \end{gathered} \right\} $$
(B3)

where Δv nx , Δv ny, Δv nz , and Δv np are the components of the two balls’ velocity difference along three coordinate axes x, y, and z, and along the principal normal strain direction, respectively. Inserting Eq. [B3] into Eq. [B2] yields:

$$ \left. \begin{aligned} \gamma_{xy} & = \gamma_{yx} = 5.226C\rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \left[ {(\Updelta v_{{{\text{n}}z}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )n^{2} /lm - (\Updelta v_{{{\text{n}}x}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )l/m - (\Updelta v_{{{\text{n}}y}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )m/l} \right] \\ \gamma_{yz} & = \gamma_{zy} = 5.226C\rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \left[ {(\Updelta v_{{{\text{n}}x}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )l^{2} /mn - (\Updelta v_{{{\text{n}}y}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )m/n - (\Updelta v_{{{\text{n}}z}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )n/m} \right] \\ \gamma_{xz} & = \gamma_{zx} = 5.226C\rho_{\text{P}} \rho_{\text{B}}^{ - 06} E_{\text{B}}^{ - 0.4} \left[ {(\Updelta v_{{{\text{n}}y}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )m^{2} /nl - (\Updelta v_{{{\text{n}}x}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )l/n - (\Updelta v_{{{\text{n}}z}}^{0.8} - \Updelta v_{{{\text{n}}p}}^{0.8} )n/l} \right] \\ \end{aligned} \right\} $$
(B4)

Equation [B4] expresses that a shear strain is directly proportional to C, ρ P, ρ −0.6B , and E −0.4B like normal strain. Based on Eq. [B4], the shear strain seems to be directly proportional to the components of the two balls’ velocity difference. Thus, the shear strains are assumed directly proportional to the components of the two balls’ velocity difference along the corresponding shear strain directions. It is challenging to determine the constant that correlates γ to P ρ −0.6 B E −0.4 B Δv 0.8 s . To render this problem tractable, it is assumed that the constant is 5.226, a value determined for a normal strain (see Eq. [8]).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Yao, B., Zhang, Z. et al. Strain Energy During Mechanical Milling: Part I. Mathematical Modeling. Metall Mater Trans A 43, 4247–4257 (2012). https://doi.org/10.1007/s11661-012-1223-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1223-4

Keywords

Navigation