Skip to main content
Log in

Metastable Phase Transformation in Ti-5Ta-2Nb Alloy and 304L Austenitic Stainless Steel under Explosive Cladding Conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-5Ta-2Nb alloy was clad on 304L austenitic stainless steel (SS) using the explosive cladding process. Both Ti-5Ta-2Nb and 304L austenitic steel were severely deformed due to high pressure (in the gigapascal range) and strain rate (105/s), which are characteristics of explosive loading conditions. Consequent changes produced in the microstructure and crystal structure of both the alloys are studied using electron microscopy techniques. The microstructure of both Ti-Ta-Nb alloy and 304L steel showed evidence for the passage of the shock waves in the form of a high number density of lattice defects such as dislocations and deformation twins. In addition, both the alloys showed signatures of phase transformation under nonequilibrium conditions resulting in metastable transformation products. 304L SS showed martensitic transformation to both α′(bcc) and ε(hcp) phases. Microscopic shear bands, shear band intersections, and twin boundaries were identified as nucleation sites for the formation of strain-induced phases. Ti-Ta-Nb alloy underwent metastable phase transformation to an fcc phase, which could be associated with regions having a specific morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. B. Raj and U. Kamachi Mudali: Prog. Nucl. Energy, 2006, vol. 48, pp. 283–313.

  2. K. Szymlek: Adv. Mater. Sci., 2008, vol. 8, pp. 186–94.

    Google Scholar 

  3. T.B. Massalski: Binary Alloy Phase Diagrams, ASM, Materials Park, OH, 1990, p. 1783.

  4. A. Oberg, N. Martensson, and J.A. Schweitz: Metall. Trans. A, 1985, vol. 16A, pp. 841–52.

    Google Scholar 

  5. H.C. Dey, M. Ashfaq, A.K. Bhaduri, and K. Prasad Rao: J. Mater. Proc. Technol., 2009, vol. 209, pp. 5862–70.

    Article  CAS  Google Scholar 

  6. M. Ghosh, K. Bhanumurthy, G.B. Kale, J. Krishnan, and S. Chatterjee: J. Nucl. Mater., 2003, vol. 322, pp. 235–41.

    Article  CAS  Google Scholar 

  7. S.A.A. Akbari Mousavi, L.M. Barrett, and S.T.S. Al-Hassani: J. Mater. Proc. Technol., 2008, vol. 202, pp. 224–39.

    Article  CAS  Google Scholar 

  8. B. Kurt, N. Orhan, and M. Kaya: Mater. Sci. Technol., 2009, vol. 25 (4), pp. 556–60.

    Article  CAS  Google Scholar 

  9. M. Sahin: Mater. Design, 2007, vol. 28 (7), pp. 2244–50.

    Article  CAS  Google Scholar 

  10. S.A.A. Akbari Mousavi and P.F. Sartangi: Mater. Design, 2009, vol. 30, pp. 459–68.

    Article  CAS  Google Scholar 

  11. N. Kahraman, B. Gulenc, and F. Findik: J. Mater. Proc. Technol., 2005, vol. 169, pp. 127–33.

    Article  CAS  Google Scholar 

  12. A. Pocalyko: Weld. J., 1987, vol. 25, pp. 24–30.

    Google Scholar 

  13. X. Changqing and J. Zhanpeng: J. Less Comm. Met., 1990, vol. 162, pp. 315–22.

    Article  Google Scholar 

  14. S.A.A. Akbari Mousavi and P.F. Sartangi: Mater. Sci. Eng. A, 2008, vol. A494, pp. 329–36.

    CAS  Google Scholar 

  15. C.H. Oxford and P.E.J. Flewitt: Metall. Trans. A, 1977, vol. 8A, pp. 741–50.

    CAS  Google Scholar 

  16. M. Nishida, A. Chiba, S. Ando, K. Imamura, and H. Minato: Metall. Trans. A, 1993, vol. 24A, pp. 743–50.

    CAS  Google Scholar 

  17. S. Banerjee and P. Mukhopadhyay: Phase Transformations—Examples from Titanium and Zirconium Alloys, Pergamon Materials Series, Elsevier, London, 2007, pp. 9–13.

    Google Scholar 

  18. D. Errandonea, Y. Meng, M. Somayazulu, and D. Hausermann: Physica B, 2005, vol. 355, pp. 116–25.

    Article  CAS  Google Scholar 

  19. M. Jafari, M. Vaezzadeh, and S. Noroozizadeh: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3287–90.

    Article  Google Scholar 

  20. K.D. Joshi, G. Jyoti, S.C. Gupta, and S.K. Sikka: Phys. Rev. B, 2002, vol. 65, pp. 052106-1–052106-3.

    Article  Google Scholar 

  21. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.J. Fecht: J. Appl. Phys., 2003, vol. 93 (3), pp. 1520–24.

    Article  CAS  Google Scholar 

  22. M.J. Phasha, M. Kasonde, and P.E. Ngopee: Science Real and Relevant: 2nd CSIR Biennial Conf., CSIR International Convention Centre, Pretoria, unpublished research, 2008. http://researchspace.csir.co.za/dspace/bitstream/10204/2665/1/Phasha_P_2008.pdf.

  23. C.G. Rhodes and N.E. Paton: Metall. Trans. A, 1979, vol. 10A, pp. 209–16.

    CAS  Google Scholar 

  24. L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13A, pp. 627–35.

    Google Scholar 

  25. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1905–14.

    CAS  Google Scholar 

  26. J. Talonen and H. Hanninen: Acta Mater., 2007, vol. 55, pp. 6108–18.

  27. M. Smaga, F. Walther, and D. Eifler: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 394–97.

  28. M.R.D. Rocha and C.A.S.D. Oliveira: Mater. Sci. Eng. A, 2009, vol. 517, pp. 281–85.

    Article  Google Scholar 

  29. K. Datta, R. Delhez, P.M. Bronsveld, J. Beyer, H.J.M. Geijselaers, and J. Post: Acta Mater., 2009, vol. 57, pp. 3321–26.

  30. T. Kirindi and N. Dikici: J. Alloys Compd., 2006, vol. 407, pp. 157–62.

    Article  CAS  Google Scholar 

  31. A. Das and S. Tarafder: Int. J. Plast., 2009, vol. 25 (11), pp. 2222–47.

    Article  CAS  Google Scholar 

  32. V. Mertinger, E. Nagy, F. Tranta, and J. Solyom: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 718–22.

  33. J.Y. Choi and W. Jin: Scripta Mater., 1997, vol. 36 (1), pp. 99–104.

    Article  CAS  Google Scholar 

  34. M.M. Schwartz: Metals Joining Manual, McGraw-Hill Book Co., New York, NY, 1979, pp. 1–42.

    Google Scholar 

  35. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill Book Co., New York, NY, 1988, pp. 531–32.

    Google Scholar 

  36. R. Mythili, S. Saroja, and M. Vijayalakshmi: Mater. Sci. Eng. A, 2007, vols. 454–455, pp. 43–51.

  37. R. Mythili, V. Thomas Paul, S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan: Mater. Sci. Eng. A, 2005, vol. 390, pp. 299–312.

    Article  Google Scholar 

  38. A.A. Akbari Mousavi and S.T.S. Al-Hassani: J. Mech. Phys. Solids, 2005, vol. 53, pp. 2501–28.

    Article  CAS  Google Scholar 

  39. C. Sudha, T.N. Prasanthi, S. Murugesan, S. Saroja, P. Kuppusami, and M. Vijayalakshmi: Sci. Technol. Weld. Join., 2011, vol. 16 (2), pp. 133–39.

    Article  CAS  Google Scholar 

  40. N. Gey, M. Humbert, and H. Moustahfid: Scripta Mater., 2000, vol. 42 (6), pp. 525–30.

    Article  CAS  Google Scholar 

  41. D. Van Heerden, D. Josell, and D. Shechtman: Acta Mater., 1996, vol. 44 (1), pp. 297–306.

    Article  Google Scholar 

  42. T. Tepper, D. Shechtman, D. Van Heerden, and D. Josell: Mater. Lett., 1997, vol. 33, pp. 181–84.

    Article  CAS  Google Scholar 

  43. C.G. Rhodes and J.C. Williams: Metall. Trans. A, 1975, vol. 6A, pp. 1670–71.

    CAS  Google Scholar 

  44. D. Banerjee and J.C. Williams: Scripta Metall., 1983, vol. 17, pp. 1125–28.

    Article  CAS  Google Scholar 

  45. D.L. Zhang and D.Y. Ying: Mater. Lett., 2001, vol. 50 (2–3), pp. 149–53.

    Article  CAS  Google Scholar 

  46. K. Asano, H. Enoki, and E. Akiba: J. Alloys Compd., 2009, vol. 480 (2), pp. 558–63.

    Article  CAS  Google Scholar 

  47. G. Sridhar, R. Gopalan, and D.S. Sarma: Metallography, 1987, vol. 20, pp. 291–310.

    Article  CAS  Google Scholar 

  48. J. Chakraborty, K. Kumar, R. Ranjan, S.G. Chowdhury, and S.R. Singh: Solid State Phenomena, 2010, vol. 160, pp. 109–16.

    Article  CAS  Google Scholar 

  49. A.A. Ezra: Principles and Practise of Explosive Metal Working, Garden City Press Ltd., United Kingdom, 1973, vol. 1.

  50. S.S.M. Tavares, J.M. Pardal, M.J. Gomes da Silva, H.F.G. Abreu, and M.R. Da Silva: Mater. Charact., 2009, vol. 60, pp. 907–11.

    Article  CAS  Google Scholar 

  51. M. Roberti Da Rocha, and C.A. Silva de Oliveira: Mater. Sci. Eng. A, 2009, vol. 517, pp. 281–85.

  52. L. Bracke, L. Kestens, and J. Penning: Scripta Mater., 2007, vol. 57, pp. 385–88.

    Article  CAS  Google Scholar 

  53. P.L. Mangonon and G. Thomas: Metall. Trans., 1970, vol. 1, pp. 1577–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Baldev Raj, former Director, IGCAR, and Dr. T. Jayakumar, Director, Metallurgy and Materials Group, IGCAR, for their constant support and encouragement for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sudha.

Additional information

Manuscript submitted April 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudha, C., Prasanthi, T.N., Paul, V.T. et al. Metastable Phase Transformation in Ti-5Ta-2Nb Alloy and 304L Austenitic Stainless Steel under Explosive Cladding Conditions. Metall Mater Trans A 43, 3596–3607 (2012). https://doi.org/10.1007/s11661-012-1198-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1198-1

Keywords

Navigation