Skip to main content
Log in

Effect of Iron Content on Sintering Behavior of Ti-V-Fe-Al Near-β Titanium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two near-β Ti-10V-3Fe-3Al and Ti-10V-2Fe-3Al alloys were produced by blended elemental powder metallurgy using hydrogenated titanium and V-Fe-Al master alloy powders. The distributions of the alloying elements were investigated at different stages of transformation of the heterogeneous powder compacts into the final homogeneous alloy product. The influence of iron content on chemical homogenization, densification, microstructure, and mechanical properties of as-sintered alloys was discussed with respect to the fast diffusion mobility of iron in titanium. It was concluded that a 1 pct increase in Fe content, as the alloying element with the fastest diffusivity in titanium, has a positive effect on densification. However, this also results in some grain coarsening of the final material. The attained mechanical properties were comparable with those of cast/wrought near-beta titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Olympus is a trademark of Olympus Corporation, Tokyo, Japan.

  2. Brucker is trademark of Brucker Corporation, Billerica, MA.

References

  1. G. Lutjering and J.C. Williams: Titanium, 2nd ed., Springer-Verlag, Berlin Germany, 2007, p. 442.

  2. F.H. Froes and D. Eylon: Int. Mater. Rev., 1990, vol. 35, no. 3, pp. 162-82.

    CAS  Google Scholar 

  3. V.S. Moxson, O.N. Senkov, and F.H. Froes: Int. J. Powder Metall., 1998, vol. 34, no. 5, pp. 45-53.

    CAS  Google Scholar 

  4. J.E. Barnes, W. Peter, and C.A. Blue: Mater. Sci. Forum, 2009, vols. 618–619, pp. 165-71.

    Article  Google Scholar 

  5. M. Hagiwara, Y. Kaieda, Y. Kawabe, and S. Miura: ISIJ Int., 1991, vol. 31, no. 8, pp. 922-30.

    Article  CAS  Google Scholar 

  6. T. Fujita, A. Ogawa, C. Ouchi, and H. Tajima: Mater. Sci. Eng. A, 1996, vol. 213, pp. 148-53.

    Article  Google Scholar 

  7. M. Hagiwara and S. Emura: Mater. Sci. Eng. A, 2003, vol. 352, pp. 85-92.

    Article  Google Scholar 

  8. T. Saito, H. Takamiya, and T. Furuta: Mater. Sci. Eng. A, 1998, vol. 243, pp. 273-78.

    Article  Google Scholar 

  9. R.R. Boyer and R.D. Briggs: J. Mater. Eng. Perform., 2005, vol. 14, no 6, pp. 681-85.

    Article  CAS  Google Scholar 

  10. O.M. Ivasishin and D.G. Savvakin: Key Eng. Mater., 2010, vol. 436, pp. 113-21.

    Article  CAS  Google Scholar 

  11. O.M. Ivasishin, D. Eylon, V.I. Bondarchuk, and D.G. Savvakin: Defect Diffusion Forum, 2008, vol. 277, pp. 177-85.

    Article  CAS  Google Scholar 

  12. W. Wei, Y. Liu, K. Zhou, and B. Huang: Powder Metall., 2003, vol. 46, pp. 246-50.

    Article  CAS  Google Scholar 

  13. Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu, and B.Y. Huang: Mater. Sci. Eng. A, 2006, vol. 418, pp. 25-35.

    Article  Google Scholar 

  14. O.M. Ivasishin, D.G. Savvakin, X.O. Bondareva, and O.I. Dekhtyar: Proc. 10 th World Conf. on Titanium (2003), vol. 1, Wiley-Vch Verlag, Weinheim, Germany, 2004, pp. 495–502.

  15. H. Nakajima, M. Koiwa, Y. Minonishi, and S. Ono: Trans. JIM, 1983, vol. 24, pp. 655-60.

    CAS  Google Scholar 

  16. R.F. Peart and D.H. Tomlin: Acta Metall., 1962, vol. 10, pp. 123-34.

    Article  CAS  Google Scholar 

  17. T.D. Massalski: Binary Alloys Phase Diagrams, Eds. H. Okamoto, P.R. Subramanian, and L. Kasprzak, ASM International, Materials Park, OH, 1990.

  18. G. Neumann and C. Tuijn: Self-diffusion and Impurity Elements Diffusion in Pure Metals: Handbook of Experimental Data, Pergamon Materials Series, vol. 14, Elsevier, Amsterdam, The Netherlands, 2008, pp. 1–349.

  19. Z. Liu and G. Welsch: Metall. Trans. A, 1991, vol. 22A, pp. 946-47.

    CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the EMI Strategic Grant and URC Small Grant, University of Wollongong, Wollongong, NSW, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Pereloma.

Additional information

Manuscript submitted March 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savvakin, D.G., Carman, A., Ivasishin, O.M. et al. Effect of Iron Content on Sintering Behavior of Ti-V-Fe-Al Near-β Titanium Alloy. Metall Mater Trans A 43, 716–723 (2012). https://doi.org/10.1007/s11661-011-0875-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0875-9

Keywords

Navigation