Skip to main content
Log in

Tempering of Martensite in Dual-Phase Steels and Its Effects on Softening Behavior

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The isothermal and nonisothermal tempering of martensite in dual-phase (DP) steels was investigated mainly by analytical transmission electron microscopy, and the effect on softening behavior was studied. The isothermal tempering resulted in coarsening and spheroidization of cementite and complete recovery of laths. However, nonisothermal tempering manifested fine quasi-spherical intralath and platelike interlath cementite, decomposition of retained austenite, and partial recovery of laths. The distinct characteristic of nonisothermal tempering was primarily attributed to the synergistic effect of delay in cementite precipitation and insufficient time for diffusion of carbon due to rapid heating that delays the third stage of tempering. The finer size and platelike morphology of cementite coupled with partial recovery of lath resulted in reduced softening in nonisothermal tempering compared to severe softening in isothermal tempering due to large spheroidized cementite and complete recovery of lath substructure. The substitutional content of precipitated cementite in nonisothermal tempering was correlated to the richness of particular steel chemistry. Softening resistance during nonisothermal tempering was related to DP steel chemistry, i.e., Cr and Mn content. Fine cementite and less decomposed martensite in rich chemistry confer high resistance to softening compared to leaner chemistries, which indicated severe decomposition of martensite with coarser cementite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. RIGAKU is a trademark of Rigaku Corporation, Tokyo.

  2. JEOL7000F is a trademark of Japan Electron Optics Ltd., Tokyo.

  3. PHILIPS CM12 is a trademark of Royal Philips Electronics, Amsterdam.

  4. SHIMADZU HMV-2000 is a trademark of Shimadzu Corporation, Kyoto.

  5. STRUERS TENUPOL-5 is a trademark of Struers, Ballerup, Denmark.

References

  1. Committee on Automotive Applications: Advanced High Strength Steel (AHSS) Application Guidelines, International Iron and Steel Institute, Middletown, Ohio, 2009, Version 4.1, pp. 1–4.

  2. P.K. Ghosh, P.C. Gupta, R. Avtar, and B.K. Jha: ISIJ Int., 1990, vol. 30, pp. 233–40.

    Article  CAS  Google Scholar 

  3. M. Marya, K. Wang, L.G. Hector, Jr., and X. Gayden: J. Manuf. Sci. Eng., 2006, vol. 128, pp. 287–98.

    Article  Google Scholar 

  4. R. Neugebauer, S. Scheffler, R. Poprawe, and A. Weisheit: Prod. Eng., 2009, vol. 3 (4–5), pp. 347–51.

    Article  Google Scholar 

  5. N. Sreenivasan, M. Xia, S. Lawson, and Y. Zhou: J. Eng. Mater. Technol., 2008, vol. 130, pp. 041004-1–041004-9.

    Article  Google Scholar 

  6. S.K. Panda, N. Sreenivasan, M.L. Kuntz, and Y. Zou: J. Eng. Mater. Technol., 2008, vol. 130, pp. 041003-1–041003-9.

    Article  Google Scholar 

  7. M. Xia, E. Biro, Z. Tian, and Y. Zhou: ISIJ Int., 2008, vol. 48, pp. 809–14.

    Article  CAS  Google Scholar 

  8. V.H. Baltazar Hernandez, M.L. Kuntz, M.I. Khan, and Y. Zhou: Sci. Technol. Weld. Join., 2008, vol. 13, pp. 769–76.

    Article  CAS  Google Scholar 

  9. M.I. Khan, M.L. Kuntz, and Y. Zhou: Sci. Technol. Weld. Join., 2008, vol. 13 (1), pp. 49–59.

    CAS  Google Scholar 

  10. E. Biro and A. Lee: AWS Sheet Metal Welding Conf. XI, Livonia, MI, 2004, paper 5.2.

  11. G.B. Olson and W.S. Owen: Martensite, ASM INTERNATIONAL, Metals Park, OH, 1992, p. 261.

    Google Scholar 

  12. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–38.

    Article  CAS  Google Scholar 

  13. J. Chance and N. Ridley: Metall. Trans. A, 1981, vol. 12A, pp. 1205–13.

    Google Scholar 

  14. R.C. Thomson and M.K. Miller: Acta Mater., 1998, vol. 46, pp. 2203–13.

    Article  CAS  Google Scholar 

  15. D.L. Williamson, R.G. Schupmann, J.P. Materkowski, and G. Krauss: Metall. Trans. A, 1979, vol. 10A, pp. 379–82.

    CAS  Google Scholar 

  16. M. Sarikaya, A.K. Jhingan, and G. Thomas: Metall. Trans. A, 1983, vol. 14A, pp. 1121–33.

    CAS  Google Scholar 

  17. G. Thomas: Metall. Trans. A, 1978, vol. 9A, pp. 438–50.

    Google Scholar 

  18. G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–53.

    Article  CAS  Google Scholar 

  19. R.A. Grange, C.R. Hribal, and L.F. Porter: Metall. Trans. A, 1977, vol. 8A, pp. 1775–85.

    CAS  Google Scholar 

  20. R.N. Caron and G. Krauss: Metall. Trans., 1972, vol. 3, pp. 2381–89.

    Article  CAS  Google Scholar 

  21. T. Maki, S. Morito, and T. Furuhara: Including Steel Heat Treating in the New Millennium, 19th ASM Heat Treating Society Conf. Proc., ASM International, Cincinnati, OH, Nov. 1–4, 1999, pp. 631–37.

  22. N. Farabi, D.L Chen, J. Li, Y. Zhou, and S.J. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1215–22.

    Article  Google Scholar 

  23. E. Biro, J.R. McDermid, J.D. Embury, and Y. Zhou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2348–56.

    Article  CAS  Google Scholar 

  24. T. Furuhara, K. Kobayashi, and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937–44.

    Article  CAS  Google Scholar 

  25. A. Nagao, K. Hayashi, K. Oi, S. Mitao, and N. Shikanai: Mater. Sci. Forum, 2007, vols. 539–543, pp. 4720–25.

    Article  Google Scholar 

  26. S. Tae Ahn, D.S. Kim, and W.J. Nam: J. Mater. Process. Technol., 2005, vol. 160, pp. 54–58.

    Article  Google Scholar 

  27. N. Yurioka, H. Suzuki, S. Ohshita, and S. Saito: Weld. J., 1983, June, pp. 147–53.

  28. I.A. EI-Sesy and Z.M. EI-Baradie: Mater. Lett., 2002, vol. 57, pp. 580–85.

    Article  Google Scholar 

  29. P. Messien, J.-C. Hernan, and T. Gréday: Fundamentals of Dual-Phase Steels, Proc. Symp., TMS-AIME, Warrendale, PA, 1981, pp. 161–80.

    Google Scholar 

  30. W. F. Smith and J. Hashemi: Foundations of Materials Science and Engineering, 4th ed., McGraw-Hill, New York, NY, 2006, p. 363.

  31. V.H. Baltazar Hernandez, S.K. Panda, Y. Okita, and Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 1638–47.

    Article  CAS  Google Scholar 

  32. V.H. Baltazar Hernandez: Ph.D. Thesis, University of Waterloo, Waterloo, 2010.

  33. T. Maki, K. Tsuzaki, and I. Tamura: Trans. ISIJ, 1980, vol. 20, pp. 207–14.

    CAS  Google Scholar 

  34. G. Tomas: Metall. Trans., 1971, vol. 2, pp. 2373–85.

    Article  Google Scholar 

  35. G.R. Speich: Fundamentals of Dual-Phase Steels, Proc. Symp, TMS-AIME, Warrendale, PA, 1981, p. 16.

    Google Scholar 

  36. M.K. Miller, P.A. Beaven, and D.W. Smith: Metall. Trans. A, 1981, vol. 12A, pp. 1197–1204.

    Google Scholar 

  37. G.R. Speich: Trans. AIME, 1969, vol. 245, pp. 2553–64.

    CAS  Google Scholar 

  38. K.T. Aust and J.W. Rutter: Grain Boundary Migration, Recovery and Recrystallization of Metals, American Institute of Mining, Metallurgical and Petroleum Engineers, New York, 1963, pp. 133–69.

  39. F.G. Wei and K. Tsuzaki: Acta Mater., 2005, vol. 53, pp. 2419–24.

    Article  CAS  Google Scholar 

  40. S. Takaki, S. Iizuka, K. Tomimura, and Y. Tokunaga: Mater. Trans. JIM, 1991, vol. 32, pp. 207–13.

    Google Scholar 

  41. B.A. Lindsley and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 341–51.

    Article  CAS  Google Scholar 

  42. I.M. Lifshitz and V.V. Slyosov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  43. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  44. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601–09.

    Article  Google Scholar 

  45. M.V. Speight: Acta Metall., 1968, vol. 16, pp. 133–35.

    Article  CAS  Google Scholar 

  46. Z.Q. Lv, S.H. Sun, Z.H. Wang, M.G. Qv, P. Jiang, and W.T. Fu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 107–12.

    Article  Google Scholar 

  47. A. Joarder, J.N. Jha, S.N. Ojha, and D.S. Sharma: Mater. Characterization, 1990, vol. 25, pp. 199–209.

    Article  CAS  Google Scholar 

  48. X. Huang and N.H. Pryds: Acta Mater., 2000, vol. 48, pp. 4073–82.

    Article  CAS  Google Scholar 

  49. P. Schaaf, S. Wiesen, and U. Gonser: Acta Metall. Mater., 1992, vol. 40, pp. 373–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Auto21 (one of the Networks of Centres for Excellence supported by the Canadian Government), The Initiative for Automotive Manufacturing Innovation (IAMI) supported by the Ontario Government, International Zinc Association (IZA) at Belgium, Arcelor Mittal Dofasco at Hamilton, and Huys Industries in Canada. VHBH acknowledges the support from CONACYT Mexico and the Autonomous University of Zacatecas Mexico. The authors are thankful to Professor Scott Lawson, the Centre for Advanced Materials Joining, University of Waterloo, for his constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Nayak.

Additional information

Manuscript submitted December 23, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltazar Hernandez, V.H., Nayak, S.S. & Zhou, Y. Tempering of Martensite in Dual-Phase Steels and Its Effects on Softening Behavior. Metall Mater Trans A 42, 3115–3129 (2011). https://doi.org/10.1007/s11661-011-0739-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0739-3

Keywords

Navigation