Skip to main content
Log in

Crystallography and Morphology of Carbides in a Low-Cycle Fatigued 1Cr-1Mo-0.25V Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The carbide precipitation in 1Cr-1Mo-0.25V steel subjected to low-cycle fatigue (LCF) deformation at room and elevated temperatures was investigated by means of transmission electron microscopy. Based on the electron diffraction analyses, three types of carbides, M3C-type cementite, M2C, and MC, were identified in normalized and subsequently tempered specimen. The cyclic deformation at high temperature led to the following changes in morphology and composition of carbides: the spheroidization of cementite, the enhanced precipitation of H-carbide, the formation of M2C and M23C6 at lath or prior-austenite grain boundaries, and the enrichment of Mo in most of carbides. Particular attention has been paid to the crystallographic orientation relationship (OR) between the cementite and the ferrite (α) matrix. The combined analyses based on the simulation of diffraction patterns and the trace analyses of habit plane on stereographic projection have shown that most cementite was related to the α matrix in accordance with Bagaryatskii OR, but in some cases, the Isaichev OR also was observed in the lath interior after LCF deformation at elevated temperature. In addition, M2C obeyed the Burgers–Jack OR, and MC was related to the α by the Baker–Nutting OR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.A. Senior: Mater. Sci. Eng. A, 1988, vol. 103, pp. 263-71.

    Article  Google Scholar 

  2. E.G. Ellison and A.J.F. Paterson: Proc. Inst. Mech. Eng., 1976, vol. 190, pp. 331-38.

    Article  Google Scholar 

  3. D.A. Miller, W.J. Plumbridge, and R.A. Bartlett: Met. Sci., 1981, vol. 15, pp. 413-19.

    Article  CAS  Google Scholar 

  4. V. Shankar, M. Valsan, K.B.S. Rao, R. Kannan, S.L. Mannan, and S.D. Pathak: Mater. Sci. Eng. A, 2006, vol. A437, pp. 413-22.

    CAS  Google Scholar 

  5. M.J. Collins: Met. Technol., 1978, vol. 5, pp. 325-26.

    CAS  Google Scholar 

  6. W. Zhong-Guang, K. Rakha, P. Nenonen, and C. Laird: Acta Metall., 1985, vol. 33, pp. 2129-41.

    Article  Google Scholar 

  7. A. Joarder, N.S. Cheruvu, and D.S. Sarma: Mater. Charact., 1992, vol. 28, pp. 121-31.

    Article  CAS  Google Scholar 

  8. A. Joarder, D.S. Sarma, and N.S. Cheruvu: Metall. Trans. A, 1991, vol. 22A, pp. 1811-20.

    CAS  Google Scholar 

  9. S.C. Bose, K.S. Reddy, G. Jaipal Reddy, Kulvir Singh, and D.S. Sarma: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1265–74.

  10. T.-H. Lee, E. Shin, C.-S. Oh, H.-Y. Ha, and S.-J. Kim: Acta Mater., 2010, vol. 58, pp. 3173-86.

    Article  CAS  Google Scholar 

  11. Y.A. Bagaryatskii: Dokl. Akad. Nauk SSSR, 1950, vol. 73, pp. 1161-64.

    CAS  Google Scholar 

  12. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, UK, 1988, pp. 375-431.

    Google Scholar 

  13. S. Nagakura and S. Oketani: Trans. ISIJ, 1968, vol. 8, pp. 265-94.

    CAS  Google Scholar 

  14. K.W. Andrews, D.J. Dyson, and S.R. Keown: Interpretation of Electron Diffraction Patterns, Adam Hilger, London, UK, 1971, pp. 180-222.

    Google Scholar 

  15. W. Rong and G.L. Dunlop: Acta Metall., 1984, vol. 32, pp. 1591-99.

    Article  CAS  Google Scholar 

  16. D.H. Jack: Mater. Sci. Eng., 1974, vol. 13, pp. 19-27.

    Article  CAS  Google Scholar 

  17. R.G. Baker and J. Nutting: Iron Steel Inst. Spec. Rep., 1969, vol. 64, pp. 1-22.

    Google Scholar 

  18. P. Vallas and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermediate Phases, ASM, Metals Park, OH, 1985, p. 1894.

    Google Scholar 

  19. I.V. Isaichev: Z. Tekhn. Fiz., 1947, vol. 17, pp. 835-38.

    CAS  Google Scholar 

  20. K.W. Andrews: Acta Metall., 1963, vol. 11, pp. 939-46.

    Article  CAS  Google Scholar 

  21. W. Pitsch: Acta Cryst., 1962, vol. 10, pp. 79-80.

    Google Scholar 

  22. N.J. Petch: Acta Cryst., 1953, vol. 6, p. 96.

    Article  CAS  Google Scholar 

  23. D.S. Zhou and G.J. Shiflet: Metall. Trans. A, 1992, vol. 23A, pp. 1259-69.

    CAS  Google Scholar 

  24. X. Huang and N.H. Pryds: Acta Mater., 2000, vol. 48, pp. 4073-82.

    Article  CAS  Google Scholar 

  25. M.-X. Zhang and P.M. Kelly: Acta Mater., 1998, vol. 46, pp. 4081-91.

    Article  CAS  Google Scholar 

  26. Y. Ohmori, Y.-C. Jung, K. Nakai, and H. Shioiri: Acta Mater., 2001, vol. 49, pp. 3149-62.

    Article  CAS  Google Scholar 

  27. H.K.D.H. Bhadeshia: Acta Metall., 1980, vol. 28, pp. 1103-14.

    Article  CAS  Google Scholar 

  28. M. Hillert: Decomposition of Austenite by Diffusional Processes, Interscience, New York, NY, 1962, pp. 197-247.

    Google Scholar 

  29. K.W. Andrews and D.J. Dyson: Iron Steel, 1967, vol. 40, pp. 93-98.

    CAS  Google Scholar 

  30. D.N. Shackleton and P.M. Kelly: Acta Metall., 1967, vol. 15, pp. 979-92.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Power Generation & Electricity Delivery (No. R-2007-1-001-01) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy. The authors would like to express their gratitude to Dr. Yun-Chul Jung for helpful discussion on crystallographic analysis of carbides, and Mrs. Wee-Do Yu, Sung-Tae Kim, Hong-Dong Kim, and Jong-In Bae for their valuable support in experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Ho Lee.

Additional information

Manuscript submitted April 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TH., Oh, CS., Ryu, SH. et al. Crystallography and Morphology of Carbides in a Low-Cycle Fatigued 1Cr-1Mo-0.25V Steel. Metall Mater Trans A 42, 147–157 (2011). https://doi.org/10.1007/s11661-010-0492-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0492-z

Keywords

Navigation