Skip to main content
Log in

Characterization of Gamma Prime (γ′) Precipitates in a Polycrystalline Nickel-Base Superalloy Using Small-Angle Neutron Scattering

  • Symposium: Diffraction Studies of Advanced Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Small angle neutron scattering (SANS) has been used to evaluate the temporal evolution of the secondary and tertiary γ′ precipitates in the nickel-base superalloy, RR1000, in situ during an aging heat treatment at 1033 K (760 °C) following a supersolvus heat treatment and oil quench. The bimodal distribution of secondary and tertiary γ′ was analyzed using a specially developed polydispersive model capable of evaluating the scattering curves to obtain precipitate size distributions (PSDs) and volume fractions as a function of time. The model was designed to be suitable for high volume fractions of γ′ and takes into account the scattering interaction between precipitates. The results show an increase in the volume fraction and the mean particle size of both the secondary γ′ and tertiary γ′ during aging. The initial and final precipitate distributions have been characterized using transmission electron microscopy (TEM) and show satisfactory correlation with the SANS data across the scattering vector range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. C.T. Sims, N.S. Stoloff, and W.C. Hagel: Superalloys II—High Temperature Materials for Aerospace and Industrial Power, John Wiley & Sons, Inc., New York, NY, 1987, pp. 15, 17–20.

  2. M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85–97.

    Article  Google Scholar 

  3. R.C. Reed: The Superalloys—Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2006, p. 241.

    Google Scholar 

  4. R.J. Mitchell, J.A. Lempsky, R. Ramanathan, H.Y. Li, K.M Perkins, and L.D. Connor: in Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.R. Woodard, eds., TMS, Warrendale, PA, 2008, pp. 347–56.

    Google Scholar 

  5. Treatise on Materials Science and Technology: Neutron Scattering, G. Kostorz, ed., Academic Press, New York, NY, 1979, vol. 15, pp. 39–40, 227–232.

  6. J.K. Percus and G.J. Yevick: Phys. Rev., 1958, vol. 110, pp. 1–13.

    Article  CAS  Google Scholar 

  7. J.B. Hayter and J. Penfold: Mol. Phys., 1981, vol. 42 (1), pp. 109–18.

    Article  CAS  Google Scholar 

  8. L. Blum and G. Stell: J. Chem. Phys., 1979, vol. 71, pp. 42–46.

    Article  CAS  Google Scholar 

  9. L. Blum and G. Stell: J. Chem. Phys., 1980, vol. 72, p. 2212.

    Article  Google Scholar 

  10. A. Vrij: J. Chem. Phys., 1978, vol. 69, pp. 1742–47.

    Article  CAS  Google Scholar 

  11. M. Kotlarchyk and S.H. Chen: J. Chem. Phys., 1983, vol. 79, pp. 2461–69.

    Article  CAS  Google Scholar 

  12. W.L. Griffith, R. Triolo, and A.L. Compere: Phys. Rev. A, 1987, vol. 35, pp. 2200–06.

    Article  CAS  Google Scholar 

  13. H. Lemke, Y. Wang, D. Mukherji, W. Chen, A. Wiedenmann, and R.P. Wahi: Z. Metallkd., 1996, vol. 87 (4), pp. 286–94.

    CAS  Google Scholar 

  14. M. Véron and P. Bastie: Acta Mater., 1996, vol. 45 (8), pp. 3277–82.

    Article  Google Scholar 

  15. A.M. Brass and J. Chene: Scripta Mater., 2000, vol. 43 (10), pp. 913–18.

    Article  CAS  Google Scholar 

  16. G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockinger, and H. Leitner: Mater. Sci. Eng. A, 2009, vol. 523 (1–2), pp. 295–303.

    Google Scholar 

  17. D. Mukherji, P. Strunz, D. Del Genovese, R. Gilles, and J. Rösler: Mater. Sci. Eng. A, 2003, vol. 34A, pp. 2781–92.

    CAS  Google Scholar 

  18. P. Strunz and A. Wiedenmann: J. Appl. Crystallogr., 1997, vol. 30, pp. 1132–39.

    Article  CAS  Google Scholar 

  19. P. Strunz, R. Gilles, D. Mukherji, and A. Wiedenmann: J. Appl. Crystallogr., 2003, vol. 36, pp. 854–59.

    Article  CAS  Google Scholar 

  20. J.S. Hessel, W. Voice, A.W. James, S.A. Blackham, C.J. Small, and M.R. Winstone: Patent No. EP0803585, Feb. 2000.

  21. S.M. King: Using COLETTE, ISIS, RAL, Nov. 2006.

  22. R.K. Heenan, J. Penfold, and S.M. King: J. Appl. Crystallogr., 1997, vol. 30, pp. 1140–47.

    Article  CAS  Google Scholar 

  23. N.W. Ashcroft and D.C. Langreth: Phys. Rev., 1967, vol. 156, pp. 685–92.

    Article  CAS  Google Scholar 

  24. National Institute of Standards and Technology: SANS Model Function Documentation, available at http://www.ncnr.nist.gov/programs/sans/data/ \\red anal.html, Feb. 2008.

  25. IGOR Pro 6 http://www.wavemetrics.com, Feb. 2010.

  26. S.R. Kline: J. Appl. Crystallogr., 2006, vol. 39, pp. 895–900.

    Article  CAS  Google Scholar 

  27. National Institute of Standards and Technology: SANS Data Analysis Documentation, available at http://www.ncnr.nist.gov/programs/sans/data/ \\red anal.html, Feb. 2008.

  28. W.S. Rasband: ImageJ, U.S. National Institutes of Health, Bethesda, MD, 1997–2009.

  29. M.D. Abramoff: Biophotonics Int., 2004, vol. 11 (7), pp. 36–42.

    Google Scholar 

  30. R.J. Mitchell: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 2004, pp. 79–125.

  31. R.W. Cahn and P. Haasen: Physical Metallurgy, Elsevier Science B.V., Amsterdam, The Netherlands, 1996, pp. 1001–02.

    Google Scholar 

  32. Thermo-Calc Software AB, Thermo-Calc http://www.thermocalc.com/, Feb. 2010.

  33. V.F. Sears: Neutron News, 1992, vol. 3 (3), pp. 26–37.

    Article  Google Scholar 

  34. J. Zrnik, P. Strunz, V. Vrchovinsky, O. Muransky, Z. Novy, and A. Wiedenmann: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 728–33.

    Google Scholar 

Download references

Acknowledgments

The author acknowledges and thanks the EPSRC and Rolls-Royce plc. for their financial support in the completion of this work. Permission has been given to publish this article from Rolls-Royce plc. and the University of Cambridge. We extend our thanks to ISIS, Rutherford Appleton Laboratory, for their help during and after the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Collins.

Additional information

Manuscript submitted March 1, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, D.M., Heenan, R.K. & Stone, H.J. Characterization of Gamma Prime (γ′) Precipitates in a Polycrystalline Nickel-Base Superalloy Using Small-Angle Neutron Scattering. Metall Mater Trans A 42, 49–59 (2011). https://doi.org/10.1007/s11661-010-0466-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0466-1

Keywords

Navigation