Skip to main content
Log in

Modeling Creep Strength of Welded 9 to 12 Pct Cr Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The influence of weld-simulated heat treatments of 9 to 12 pct steels is evaluated by a fundamental model for creep. The heat-affected microstructure is predicted by considering particle coarsening, particle dissolution, and subgrain coarsening. Particle coarsening is predicted for a multicomponent system, showing significant M23C6 coarsening in the bcc matrix. Dissolution simulations of MX and M23C6 are performed by considering a size distribution of particles, indicating that the smallest particles can be dissolved already at relatively low welding temperatures. Recovery in dislocation networks will take place due to the coarser particles. Creep rate modeling is performed based on the heat-affected microstructure, showing strength reduction of weld-simulated material by 12 pct at 1123 K (850 °C) and 30 pct at 1173 K (900 °C). The main cause of this degradation is believed to be the loss of the smallest carbonitrides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I.J. Perrin and J.D. Fishburn: Creep and Fracture in High Temperature Components—Design And Life Assessment Issues, DEStech Publications Inc., Lancaster, PA, 2005, pp. 46–30.

    Google Scholar 

  2. D.J. Allen, B. Harvey, and S.J. Brett: Int. J. Press. Vess. Pip., 2007, vol. 84, pp. 104–13.

    Article  CAS  Google Scholar 

  3. J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 1387–94.

    Article  CAS  Google Scholar 

  4. M.E. Abd El-Azim, A.M. Nasreldin, G. Zies, and A. Klenk: Mater. Sci. Technol., 2005, vol. 21, pp. 779–90.

    Article  CAS  Google Scholar 

  5. K. Laha, K.S. Chandrdravathi, P. Parameswaran, K. Bhanu Sankara Rao, and S.L. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68.

    Article  CAS  ADS  Google Scholar 

  6. J. Hald: Steel Res., 1996, vol. 67, pp. 369–74.

    CAS  ADS  Google Scholar 

  7. L. Korcakova: Doctoral Thesis, Technical University of Denmark, Kgs. Lyngby, Denmark, 2002.

  8. P. Polcik, T. Sailer, W. Blum, S. Straub, J. Buršík, and A. Orlová: Mater. Sci. Eng., 1999, vol. A260, pp. 252–59.

    CAS  Google Scholar 

  9. G. Eggeler, A. Ramteke, M. Coleman, B. Chew, G. Peter, A. Burblies, J. Hald, C. Jefferey, J. Rantala, M. deWitte, and R. Mohrmann: Int. J. Press. Vess. Pip., 1994, vol. 60, pp. 237–57.

    Article  CAS  Google Scholar 

  10. D. Jandová, J. Kasl, and V. Kanta: Creep & Fracture in High Temperature Components—Design & Life Assessment, 2nd Int. ECCC Conf., Empa, Dübendorf, Switzerland, Apr. 21–23, 2009.

  11. T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe: Int. J. Press. Vess. Pip., 2006, vol. 83, pp. 61–71.

    Article  Google Scholar 

  12. K. Maruyama, K. Sawada, and J.-I. Koike: ISIJ Int., 2001, vol. 41, pp. 641–53.

    Article  CAS  Google Scholar 

  13. K. Stiller, H.O. Andrén, and M. Andersson: Mater. Sci. Technol., 2008, vol. 24, pp. 633–40.

    Article  CAS  Google Scholar 

  14. H. Danielsen and J. Hald: Energy Mater., 2006, vol. 1, pp. 49–57.

    Article  CAS  Google Scholar 

  15. A. Golpayegani, H.-O. Andrén, H. Danielsen, and J. Hald: Mater. Sci. Eng., 2008, vol. A489, pp. 310–18.

    CAS  Google Scholar 

  16. B. Sundman, B. Jansson, and J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  CAS  Google Scholar 

  17. J. Eliasson, Å. Gustafson, and R. Sandström: Key Eng. Mater., 2000, vols. 171–174, pp. 277–84.

    Article  Google Scholar 

  18. K. Suzuki, S. Kumai, Y. Toda, H. Kushima, and K. Kimura: ISIJ Int., 2003, vol. 43, pp. 1089–94.

    Article  CAS  Google Scholar 

  19. P.J. Ennis, A. Zielinska-Lipiecz, O. Wachter, and A. Czyrska-Filemonowicz: Acta Mater., 1997, vol. 45, pp. 4901–07.

    Article  CAS  Google Scholar 

  20. M. Hättestrand and H.-O. Andrén: Micron, 2001, vol. 32, pp. 789–97.

    Article  Google Scholar 

  21. H. Magnusson and R. Sandström: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2428–34.

    Article  CAS  ADS  Google Scholar 

  22. A Borgenstam, A. Engström, L. Höglund, and J. Ågren: Phase Equilib., 2000, vol. 21, pp. 269–80.

    Article  CAS  Google Scholar 

  23. J. Ågren, M.T. Clavaguera-Mora, J. Golcheski, G. Inden, H. Kumar, and C. Sigli: CALPHAD, 2000, vol. 24, pp. 41–54.

    Article  Google Scholar 

  24. R. Sandström: Acta Mater., 1977, vol. 25, pp. 905–11.

    Article  Google Scholar 

  25. H. Magnusson, and R. Sandström: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2033–39.

    Article  CAS  ADS  Google Scholar 

  26. M.E. Kassner and M.T. Pérez-Prado: Prog. Mater Sci., 2000, vol. 45, pp. 1–102.

    Article  CAS  Google Scholar 

  27. H. Cerjak and P. Mayr: Creep-Resistant Steels, Woodhead Publishing Limited, Cambridge, England, pp. 472–503.

  28. H. Magnusson and R. Sandström: Mater. Sci. Eng., A, 2009, vol. 527, pp. 118–25.

    Article  Google Scholar 

  29. S.K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, and M. Tabuchi: ISIJ Int., 2002, vol. 42, pp. 1497–1504.

    Article  CAS  Google Scholar 

  30. S. Spigarelli and E. Quadrini: Mater. Des., 2002, vol. 23, pp. 547–52.

    CAS  Google Scholar 

  31. K. Laha, K.S. Chandrdravathi, P. Parameswaran, and K. Bhanu Sankara Rao: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 386–97.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research (SSF) programmes CROX, “Mechanisms of creep and oxidation of high performance alloys,” and MATOP, “Development of tools for integrated optimisation of materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Magnusson.

Additional information

Manuscript submitted February 5, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusson, H., Sandström, R. Modeling Creep Strength of Welded 9 to 12 Pct Cr Steels. Metall Mater Trans A 41, 3340–3347 (2010). https://doi.org/10.1007/s11661-010-0449-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0449-2

Keywords

Navigation