Skip to main content
Log in

Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at. pct W Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling (~95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented (\( \left\{ {00 1} \right\}\left\langle { 100} \right\rangle \)) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube (\( \left\{ {0 1 3} \right\}\left\langle { 100} \right\rangle \)). Low-temperature annealing produces a weak cube texture along with the \( \left\{ {0 1 3} \right\}\left\langle { 100} \right\rangle \) component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the \( \left\{ {0 1 3} \right\}\left\langle { 100} \right\rangle \) component. The difference in the relative strengths of the cube, and the \( \left\{ {0 1 3} \right\}\left\langle { 100} \right\rangle \) components in the two materials is evident from the beginning of recrystallization in which more \( \left\{ {0 1 3} \right\}\left\langle { 100} \right\rangle \)-oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the \( \left\{ {0 1 3} \right\}\left\langle { 100} \right\rangle \) grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.

    Article  Google Scholar 

  2. I.L. Dillamore and H. Katoh: Metal. Sci., 1974, vol. 8, pp. 73-83.

    CAS  Google Scholar 

  3. H.E. Vatne, R. Shahani, and E. Nes: Acta Metall. Mater., 1996, vol. 44, pp. 4447-62.

    CAS  Google Scholar 

  4. H.E. Vatne, T. Furu, and E. Nes: Mater. Sci. Technol., 1996, vol. 12, pp. 201-10.

    CAS  Google Scholar 

  5. A. Goyal, A.M.P. Paranthaman, and U. Schoop: Mater. Res. Bull., 2004, vol. 29, pp. 552-61.

    CAS  Google Scholar 

  6. D. Dimos, P. Chaudhari, J. Mannhart, and F.K. Legoues: Phys. Rev. Lett., 1988, vol. 61, pp. 219-22.

    Article  CAS  ADS  PubMed  Google Scholar 

  7. P.P. Bhattacharjee, R.K. Ray, and A. Upadhyaya: Scripta Mater., 2005, vol. 53, 1477-81.

    Article  CAS  Google Scholar 

  8. K.T. Kim, J.H. Lim, J.H. Kim, S.H. Jang, J. Joo, C.J. Kim, K.J. Song, and H.S. Shin: IEEE Appl. Supercon., 2005, vol. 15, 2683-86.

    Article  CAS  Google Scholar 

  9. H.J. Bunge: Mathernatische Methoden der Textur‐Analyse, Academic Press, Berlin, Germany, 1969.

    Google Scholar 

  10. N. Hansen, D.J. Jensen, and T. Philos: Roy. Soc. A, 1999, vol. 357, pp. 1447-69.

    CAS  Google Scholar 

  11. D.A. Hughes and N. Hansen: Philos. Mag., 2003, vol. 83, pp. 3871-93.

    Article  CAS  ADS  Google Scholar 

  12. S. Wright and D.J. Field: Advanced Software Capabilities for Automated EBSD, Academic/Plenum Publishers, New York, NY, 2000.

    Google Scholar 

  13. X.L. Li, W. Liu, A. Godfrey, D.J. Jensen, and Q. Liu: Acta Mater., 2007, vol. 55, pp. 3531-40.

    Article  CAS  Google Scholar 

  14. A.A. Ridha and W.B. Hutchinson: Acta Metall., 1982, vol. 30, pp. 1929-39.

    Article  CAS  Google Scholar 

  15. S. Zaefferer, S.T. Baudin, and R. Penelle: Acta Mater., 2001, vol. 49, pp. 1105-22.

    Article  CAS  Google Scholar 

  16. H. Klein and H.J. Bunge: Advances and Applications of Quantitative Texture Analysis, Butterworths, London, UK, 1989.

    Google Scholar 

  17. Y. Zhou, L.S. Toth, and K.W. Neale: Acta Metall. Mater., 1992, vol. 40, pp. 3179-93.

    Article  CAS  Google Scholar 

  18. L.S. Toth, K.W. Neale, and J.J. Jonas: Acta Metall. Mater., 1989, vol. 37, pp. 2197-2210.

    Article  Google Scholar 

  19. K.W. Neale, L.S. Toth, and J.J. Jonas: Int. J. Plast., 1990, vol. 6, 45-61.

    Article  Google Scholar 

  20. M. Matsuo: ISIJ Int., 1989, vol. 29, pp. 809-27.

    Article  CAS  Google Scholar 

  21. H. Chang and I. Baker: Mater. Sci. Eng. A, 2008, vol. 476, pp. 46-59.

    Article  Google Scholar 

  22. J. Hirsch and K. Lucke: Acta Metall. Mater., 1988, vol. 36, pp. 2863-82.

    Article  CAS  Google Scholar 

  23. J. Hirsch and K. Lucke: Acta Metall. Mater., 1988, vol. 36, pp. 2883-904.

    Article  CAS  Google Scholar 

  24. J. Hirsch, K. Lucke, and M. Hatherly: Acta Metall. Mater., 1988, vol. 36, pp. 2905-27.

    Article  CAS  Google Scholar 

  25. T. Kamijo, H. Adachihara, and H. Fukutomi: Acta Metall. Mater., 1993, vol. 41, pp. 975-85.

    Article  CAS  Google Scholar 

  26. J. Hjelen, R. Orsund, and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1377-1404.

    Article  CAS  Google Scholar 

  27. P.P. Bhattacharjee, R.K. Ray, and N. Tsuji: Acta Metall. Mater., 2009, vol. 57, 2166-79.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. A. Upadhyaya, Associate Professor, IIT Kanpur, India for providing laboratory facilities for preparing the starting materials and Professor F. Wagner, LETAM, University of Metz, France for his kind permission to carry out the bulk texture measurement by XRD of several samples. P.P. Bhattacharjee would like to acknowledge the Japan Society for the Promotion Science (JSPS) for awarding a postdoctoral fellowship under the auspices of which part of this work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki P. Bhattacharjee.

Additional information

Manuscript submitted October 7, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, P.P., Ray, R.K. & Tsuji, N. Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at. pct W Alloy. Metall Mater Trans A 41, 2856–2870 (2010). https://doi.org/10.1007/s11661-010-0345-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0345-9

Keywords

Navigation