Skip to main content
Log in

Microstructural Evolution During the Hot Deformation of Ti-55Ni (at. pct) Intermetallic Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior of Ti-55Ni (at. pct) alloy was studied using compression testing at 1173 K (900 °C) to 1323 K (1050 °C) and at the strain rates of 0.001 to 0.35 s−1. The microstructure evolution was characterized using optical and scanning electron microscopy (SEM). The influences of hot-working parameters on the flow stress and microstructural features of this alloy were then analyzed. The results indicate that, depending on the temperature and strain rate, the dynamic recrystallization (DRX) is the dominate mechanism. Besides, the particle-stimulated nucleation (PSN) mechanism could partially recrystallize the structure. The PSN phenomenon is of significant importance for the Ti-55Ni (at. pct) that suffers from insufficient workability because of its high content of intermetallic phases. It is of interest that the discontinuous yielding phenomenon has been observed when the specimens were deformed at 1173 K (900 °C). Finally, the optimum parameters for hot working of Ti-55Ni (at. pct) alloy are determined as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.J. Clingman, F.T. Clalkins, and J.P. Smith: Proc. SPIE-Active Mater.: Behavior Mechan., 2003, vol. 5053, pp. 219–29.

    CAS  ADS  Google Scholar 

  2. G.J. Julien: Cutting instrument. In U.S. Patent 6293020B1, Nitinol Technologies, Inc., Edgewood, WA, 2001, pp. 1–35.

  3. G.J. Julien: Nitinol washers. In U.S. Patent 187020A1, Nitinol Technologies, Inc., Edgewood, WA, 2002, pp. 1–13.

  4. G.J. Julien: Shape memory parts of 60 Nitinol. In U.S. Patent 7005018, Nitinol Technologies, Inc., Edgewood, WA, 2006, pp. 1–15.

  5. G.J. Julien: Manufacturing of Nitinol parts and forms. In U.S. Patent 6422010B1, Nitinol Technologies, Inc., Edgewood, WA, 2002, pp. 1–14.

  6. G.J. Julien, Nitinol ice blade. In U.S. Patent 2005/0082773, Nitinol Technologies, Inc., Edgewood, WA, 2005, pp. 1–11.

  7. G.J. Julien: Gun barrel. In U.S. Patent 5856631, Nitinol Technologies, Inc., Edgewood, WA, 1999, pp. 1–24.

  8. G.J. Julien: Nitinol ski structure. In U.S. Patent 6267402 B1, Nitinol Technologies, Inc., Edgewood, WA, 2001, pp. 1–13.

  9. W. Gao, A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1999, vol. 265, pp. 233–9.

    Article  Google Scholar 

  10. A. Belyakov, H. Miura, and T. Sakai: Int. Conf. Thermomech. Process. of Steel Other Mater., 1997, vol. 1, pp. 257–63.

    CAS  Google Scholar 

  11. ASTM E 407:1999, American Society for Testing and Materials Standard Practice for Microetching Metals and Alloys, 1999, pp. 1–21.

  12. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and M. Haghshenas: Mater. Sci. Eng. A, 2008, vol. 497, pp. 438–44.

    Article  Google Scholar 

  13. I.P. Pinheiro, R. Barbosa, and P.R. Cetlin: Mater. Sci. Eng. A, 2007, vol. 457, pp. 90–93.

    Article  Google Scholar 

  14. Y. Kim Hee and H. Hong Soon: Mater. Sci. Eng. A, 1999, vol. 271, pp. 382–89.

    Article  Google Scholar 

  15. Y.Y. Zong, D.B. Shan, M. Xu, and Y. Lv: J. Mater. Process. Technol., 2009, vol. 209, pp. 1988–94.

    Article  CAS  Google Scholar 

  16. K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  17. Y. Duan, P. Li, K. Xue, Q. Zhang, and X. Wang: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1199–204.

    Article  CAS  Google Scholar 

  18. K. Dehghani and A.A. Khamei, Mater. Sci. Eng. A, 2010, vol. 527, pp. 684–70.

    Article  Google Scholar 

  19. A.A. Khamei and K. Dehghani: Mater. Chem. Phys., 2010, vol. 123, pp. 269–77.

    Article  CAS  Google Scholar 

  20. R.R. Adharapurapu and K.S. Vecchio: Soc. Exper. Mech., 2007, vol. 47, pp. 365–71.

    Article  CAS  Google Scholar 

  21. ASM International: ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, ASM International, Materials Park, OH, 1993, pp. 431.

    Google Scholar 

  22. W. Zhang and S. Zhang: Acta Metal. Sinica, 2006, vol. 42, pp. 1036–40.

    CAS  Google Scholar 

  23. Z. Honggang, H. Yong, L. Xuefeng, and X. Jianxin: Acta Metal. Sinica, 2007, vol. 43, pp. 930–36.

    Google Scholar 

  24. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80.

    Article  CAS  Google Scholar 

  25. W. Roberts, H. Boden, and B. Ahlblom: Metal Sci., 1979, vol. 13, pp. 195.

    Article  CAS  Google Scholar 

  26. H. Miura, H. Tsukawaki T. Sakai, and J.J. Jonas: Acta Mater., 2008, vol. 56, pp. 4944–52.

    Article  CAS  Google Scholar 

  27. M. Winning: Scripta Mater., 2008, vol. 58, pp. 85–88.

    Article  CAS  Google Scholar 

  28. O. Balancin, W.A.M. Hoffmann, and J.J. Jonas: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1353–64.

    Article  CAS  ADS  Google Scholar 

  29. Y.Y. Zong, D.B. Shan, M. Xu, and Y. Lv: Mater. Process. Tech., 2009, vol. 209, pp. 1988–94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Dehghani.

Additional information

Manuscript submitted November 14, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khamei, A., Dehghani, K. Microstructural Evolution During the Hot Deformation of Ti-55Ni (at. pct) Intermetallic Alloy. Metall Mater Trans A 41, 2595–2605 (2010). https://doi.org/10.1007/s11661-010-0338-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0338-8

Keywords

Navigation