Skip to main content
Log in

Determination of the Phase Equilibria in the Mn-Sn-Zn System at 500 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The isothermal section of the Mn-Sn-Zn system at 500 °C was determined with 20 alloys. The alloys were prepared by melting the pure elements in evacuated quartz capsules. The alloy samples were examined by means of X-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. A new ternary phase Mn4Zn8Sn (λ) was found to have a bcc structure with a lattice parameter a = 0.92508 (5) nm. Its composition range spans 25 to 35 at. pct Mn, 4 to 8 at. pct Sn, and 55 to 70 at. pct Zn. The Zn is substituted for Mn in Mn3Sn, Mn2Sn, and Mn3Sn2. The solubility of Zn in Mn3Sn, Mn2Sn, and Mn3Sn2 was measured to be about 17, 12, and 4 at. pct, respectively. The phase boundaries of the liquid and β-Mn phases were well established. The following 3 three-phase equilibria were well determined: (1) β-Mn + ε-MnZn3 + Mn3Sn, (2) λ + Mn3Sn + Mn2Sn, and (3) L + λ + Mn2Sn. The additional 5 three-phase equilibria, which are ε-MnZn3 + λ + Mn3Sn, ε 1-MnZn3 + ε-MnZn3 + λ, ε 1-MnZn3 + λ + L, Mn2Sn + L + MnSn2, and Mn3Sn2 + MnSn2 + Mn2Sn, were deduced and shown with dashed lines in the present isothermal section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.Y. Tang: J. Phase Equilib., 2008, vol. 29, pp. 337–44.

    Article  CAS  Google Scholar 

  2. G. Reumont, P. Perrot, and J. Foct: J. Mater. Sci., 1998, vol. 33, pp. 4759–68.

    Article  CAS  Google Scholar 

  3. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, and G. Stergioudis: Mater. Lett., 2006, vol. 60, pp. 786–89.

    Article  CAS  Google Scholar 

  4. N. Pistofidis, G. Vourlias, E. Pavlidou, K. Chrissafis, G. Stergioudis, E.K. Polychroniadis, and D. Tsipa: J. Therm. Anal. Calorim., 2006, vol. 86, pp. 417–22.

    Article  CAS  Google Scholar 

  5. G. Reumont, T. Gloriant, and P. Perrot: J. Mater. Sci. Lett., 1996, vol. 15, pp. 445–49.

    CAS  Google Scholar 

  6. R.W. Sandelin: Wire Wire Products, 1940, vols. 15–11, pp. 655–76.

    Google Scholar 

  7. N.Y. Tang: J. Phase Equilib., 2006, vol. 27, pp. 462–68.

    CAS  Google Scholar 

  8. N.Y. Tang, X.P. Su, and J.M. Toguri: CALPHAD, 2001, vol. 25, pp. 267–77.

    Article  CAS  Google Scholar 

  9. N.Y. Tang, X.P. Su, and X.B. Yu: J. Phase Equilib., 2003, vol. 24, pp. 528–32.

    Article  CAS  Google Scholar 

  10. X.H. Tang, F.C. Yin, X.M. Wang, J.H. Wang, X.P. Su, and N.Y. Tang: J. Phase Equilib., 2007, vol. 28, pp. 355–61.

    Article  CAS  Google Scholar 

  11. N.Y. Tang and X.P. Su: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1559–61.

    Article  CAS  Google Scholar 

  12. G. Reumont, G. Dupont, and P. Perrot: Z. Metallkd., 1995, vol. 86, pp. 608–13.

    CAS  Google Scholar 

  13. G. Reumont, M. Mathon, R. Fourmentin, and P. Perrot: Z. Metallkd., 2003, vol. 94, pp. 411–18.

    CAS  Google Scholar 

  14. Y.X. Liu, F.C. Yin, H. Tu, Z. Li, J. Wang, and X.P. Su: J. Phase Equilib., 2008, vol. 29, pp. 493–99.

    Article  Google Scholar 

  15. Z.H. Wang, J.H. Wang, Y.H. Liu, N.Y. Tang, and X.P Su: J. Phase Equilib., 2006, vol. 27, pp. 469–76.

    CAS  Google Scholar 

  16. G. Reumont, T. Gloriant, and P. Perrot: J. Mater. Sci. Lett., 1997, vol. 16, pp. 62–65.

    Article  CAS  Google Scholar 

  17. S.W. Pan, F.C. Yin, M.X. Zhao, Y. Liu, and X.P. Su: J. Alloys Compd., 2009, vol. 470, pp. 600–05.

    Article  CAS  Google Scholar 

  18. H. Okamoto and L.E. Tanner: Bull. Alloy Phase Diagrams, 1990, vol. 11, pp. 377–84.

    Article  CAS  Google Scholar 

  19. E. Wachtel and K. Tsiuplakis: Z. Metallkd., 1967, vol. 58, pp. 41–45.

    CAS  Google Scholar 

  20. J. Schramm: Z. Metallkd., 1940, vol. 32, pp. 399–407.

    CAS  Google Scholar 

  21. E.V. Potter and R.W. Huber: Trans. ASM, 1949, vol. 41, pp. 1001–22.

    Google Scholar 

  22. W.B. Henderson and R.J.M. Willcox: Philos. Mag., 1964, vol. 9, pp. 829–46.

    Article  CAS  ADS  Google Scholar 

  23. O. Romer and E. Wachtel: Z. Metallkd., 1971, vol. 62, pp. 820–25.

    CAS  Google Scholar 

  24. Y. Nakagawa and T. Hori: Trans. Jpn. Inst. Met., 1972, vol. 13, p. 167.

    CAS  Google Scholar 

  25. H.H. Xu, X. Xiong, L.J. Zhang, Y. Du, and P.S. Wang: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2042–47.

    Article  CAS  ADS  Google Scholar 

  26. M. Stange, H. Fjellvåg, S. Furuseth, and B.C. Hauback: J. Alloys Compds., 1997, vol. 259, pp. 140–44.

    Article  CAS  Google Scholar 

  27. M. Elding-Pontén, L. Stenberg, A.K. Larsson, S. Lidin, and K. Ståhl: J. Solid State Chem., 1997, vol. 129, pp. 231–41.

    Article  ADS  Google Scholar 

  28. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa: Bull. Alloy Phase Diagrams, 1985, vol. 6, pp. 330–34.

    Article  CAS  Google Scholar 

  29. P.-E. Werner, L. Eriksson, and M. Westdahl: J. Appl. Cryst., 1985, vol. 18, pp. 367–70, http://www.ccp14.ac.uk/ccp/ccp14/ccp14-by-program/treor/ccp14-expanded/treor90-dos/

  30. A. Boultif and D. Louër: J. Appl. Crystallogr., 2004, vol. 37, pp. 724–31.

    Article  CAS  Google Scholar 

  31. J. Rodríguez-Carvajal: FullProf, http://www-llb.cea.fr/fullweb/powder.htm, 2009.

  32. A.V. Tkachuk, L.G. Akselrud, Y.V. Stadnyk, and O.I. Bodak: J. Alloys Compds., 2000, vol. 312, pp. 284–87.

    Article  CAS  Google Scholar 

  33. A.V. Tkachuk, Y. K. Gorelenko, Y. V. Stadnyk, and O.I. Bodak: J. Alloys Compds., 2001, vols. 317–318, pp. 280–83.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 50721003 and 50831007), the Guangxi Science Foundation (Contract Nos. 0448022, 0540009, and 0640040), Guangxi Large Scale Apparatus Corporation Office, and the National Outstanding Youth Science Foundation of China (Grant No. 50425103). Thanks are also due to Mrs. J.R Huang for SEM/EDS examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Du.

Additional information

Manuscript submitted September 5, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Du, Y., Zhao, Q. et al. Determination of the Phase Equilibria in the Mn-Sn-Zn System at 500 °C. Metall Mater Trans A 40, 2909–2918 (2009). https://doi.org/10.1007/s11661-009-0026-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0026-8

Keywords

Navigation