Skip to main content
Log in

Domain Structure Produced by Confined Displacive Transformation and Its Response to the Applied Field

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A strain response to the applied stress of domain structure formed by a displacive transformation confined within the previously formed precipitates of the precursor phase is investigated by using three-dimensional (3-D) phase field microelasticity modeling. It is shown that the initial domain structure within particles is rearranged upon application of the stress field and is restored upon removal of the stress. As a result, the macroscopic strain caused by the domain rearrangement is recoverable. The modeling also shows that the change of the domain structure and the resultant macroscopic strain strongly depend on the magnitude and direction of the applied stress. It is found that the effect of geometrical confinement within precipitates on the stress-accommodating domain structure is the origin of the restoring driving force to the initial domain configuration. A possible relevance of this confinement mechanism to the strain reversibility in some materials systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin: Appl. Phys. Lett., 1996, vol. 69, pp. 1966–68

    Article  CAS  Google Scholar 

  2. S.E. Park, T.R. Shrout: J. Appl. Phys., 1997, vol. 82, pp. 1804–11

    Article  CAS  Google Scholar 

  3. S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, T.A. Lograsso: Appl. Phys. Lett., 2000, vol. 77, pp. 886–88

    Article  CAS  Google Scholar 

  4. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida: Nature, 2006, vol. 439, pp. 957–60

    Article  CAS  Google Scholar 

  5. A.L. Roytburd, J. Slutsker: J. Appl. Phys., 1995, vol. 77, pp. 2745–50

    Article  CAS  Google Scholar 

  6. R.C. O’Handley: J. Appl. Phys., 1998, vol. 83, pp. 3263–70

    Article  CAS  Google Scholar 

  7. R.D. James, M. Wuttig: Philos. Mag. A , 1998, vol. 77, pp. 1273–99

    Article  CAS  Google Scholar 

  8. A.A. Likhachev, K. Ullakko: Eur. Phys. J. B, 2000, vol. 14, pp. 263–67

    Article  CAS  Google Scholar 

  9. P.J. Othen, M.L. Jenkins, G.D.W. Smith: Phil. Mag. A, 1994, vol. 70, pp. 1–24

    Article  CAS  Google Scholar 

  10. A.G. Khachaturyan, D. Viehland: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2308–16

    Article  CAS  Google Scholar 

  11. A.G. Khachaturyan, D. Viehland: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2317–28

    Article  CAS  Google Scholar 

  12. A.E. Clark, J.B. Restoff, M. Wun-Fogle, T.A. Lograsso, D.L. Schlagel: IEEE Trans. Magn., 2000, vol. 36, pp. 3238–40

    Article  CAS  Google Scholar 

  13. A.E. Clark, M. Wun-Fogle, J.B. Restoff, T.A. Lograsso, J.R. Cullen: IEEE Trans. Magn., 2001, vol. 37, pp. 2678–80

    Article  CAS  Google Scholar 

  14. N. Srisukhumbowornchai, S. Guruswamy: J. Appl. Phys., 2001, vol. 93, pp. 5680–88

    Article  Google Scholar 

  15. A.G. Khachaturyan, S.M. Shapiro, S. Semenovskaya: Phys. Rev. B, 1991, vol. 43, pp. 10832–10843

    Article  Google Scholar 

  16. X.B. Ren, K. Otsuka: Nature, 1997, vol. 389, pp. 578–81

    Google Scholar 

  17. Y. Ni, Y.M. Jin, A.G. Khachaturyan: Acta Mater., 2007, vol. 55, pp. 4903–14

    Article  CAS  Google Scholar 

  18. A.G. Khachaturyan: The Theory of Structural Transformations in Solids, Wiley & Sons, New York, NY, 1983, pp. 198–212

    Google Scholar 

  19. Y. Wang, A.G. Khachaturyan: Acta Mater., 1997, vol. 45, pp. 759–73

    Article  CAS  Google Scholar 

  20. A.L. Roitburd: Sov. Phys. Solid State, 1969, vol. 10, pp. 2870–76

    Google Scholar 

  21. A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, V.M. Keppens, G. Petculescu, R.A. Taylor: J. Appl. Phys., 2003, vol. 93, pp. 8621–23

    Article  CAS  Google Scholar 

  22. M. Wuttig, L.Y. Dai, J. Gullen: Appl. Phys. Lett., 2002, vol. 80, pp. 1135–37

    Article  CAS  Google Scholar 

  23. G. Petculescu, K.B. Hathaway, T.A. Lograsso, M. Wun-Fogle, A.E. Clark: J. Appl. Phys., 2005, vol. 97, p. 10M315-1–3

    Article  Google Scholar 

  24. J. Kuwata, K. Uchino, S. Nomura: Jpn. J. Appl. Phys., 1982, vol. 21, pp. 1298–1302

    Article  CAS  Google Scholar 

  25. S.E. Park, T.R. Shrout: IEEE Trans. Ultrason. Ferroelect. Freq. Contr., 1997, vol. 44, pp. 1140–47

    Article  Google Scholar 

  26. G.A. Rossetti, W. Zhang, A.G. Khachaturyan: Appl. Phys. Lett., 2006, vol. 88, p. 072912-1–3

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Office of Naval Research through MURI Grant No. N00014-06-1-0530 and NSF Grant No. DMR-0242619 for AGK and YN is gratefully acknowledged. YMJ acknowledges the financial support of the NSF under Grant No. DMR-0706354. The simulations were performed on the DataStar in the San Diego Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.G. Khachaturyan.

Additional information

Manuscript submitted December 9, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Jin, Y. & Khachaturyan, A. Domain Structure Produced by Confined Displacive Transformation and Its Response to the Applied Field. Metall Mater Trans A 39, 1658–1664 (2008). https://doi.org/10.1007/s11661-008-9518-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9518-1

Keywords

Navigation