Skip to main content
Log in

Characterization of Open Volume Regions in a Simulated Cu-Zr Metallic Glass

  • Symposium: Bulk Metallic Glasses IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Optimizing the structural reliability of bulk metallic glass (BMG) components demands a detailed understanding of the atomic structure of the glass, particularly the defects that control plastic flow. These defects are thought to be associated with regions of low atomic density, which facilitate the required diffusion-like atomic rearrangement processes. In the present article, the distribution of low-density regions in a simulated Cu-Zr glass is studied with two different techniques. Using a hard-sphere model, the interstitial volume distribution was obtained by constructing Voronoi polyhedra around each atom and inserting spheres into the unoccupied regions at the vertices. The volumes of touching spheres were summed and corrected for any overlap to obtain the size distribution of the unoccupied sites. The resulting distribution is in good agreement with Cohen and Turnbull’s free volume model and provides insight into how a single free volume site may be described. However, this model depends significantly on the somewhat arbitrary selection of the hard-sphere atomic radii and may not give a realistic indication of the shape or connectivity of the low atomic-density regions. Recent experimental studies of the open volume distribution using positron annihilation spectroscopy probe the electron and not the atomic density. We therefore propose a novel method to identify low-density regions from ab initio calculated radially averaged electron-density distributions, which allows a more physical and less ambiguous identification of low-density areas and, at the same time, connects atomic and electron distributions. Our results show that the qualitative volume distribution from the electron-density model agrees well with the hard-sphere model, while allowing a more physical quantitative analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Inoue: Acta Mater., 2000, vol. 48, pp. 279–306

    Article  CAS  Google Scholar 

  2. J.F. Loffler: Intermetallics, 2003, vol. 11, pp. 529–40

    Article  CAS  Google Scholar 

  3. A. Peker, W.L. Johnson: Appl. Phys. Lett., 1993, vol. 63, pp. 2342–44

    Article  Google Scholar 

  4. W.H. Wang, C. Dong, C.H. Shek: Mater. Sci. Eng. R: Rep., 2004, vol. 44, pp. 45–89

    Article  CAS  Google Scholar 

  5. M.H. Cohen, D. Turnbull: J. Chem. Phys., 1959, vol. 31, pp. 1164–69

    Article  CAS  Google Scholar 

  6. F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15

    Article  CAS  Google Scholar 

  7. U. Harms, O. Jin, R.B. Schwarz: J. Non-Cryst. Solids, 2003, vol. 317, pp. 200–05

    Article  CAS  Google Scholar 

  8. M.A. Marcus: Acta Metall., 1979, vol. 27, pp. 879–91

    Article  CAS  Google Scholar 

  9. A.I. Taub, F. Spaepen: Acta Metall., 1980, vol. 28, pp. 1781–88

    Article  CAS  Google Scholar 

  10. A. Van den Beukel, J. Sietsma: Acta Metall. Mater., 1990, vol. 38, pp. 383–89

    Article  Google Scholar 

  11. F. Spaepen: Scripta Mater., 2006, vol. 54, pp. 363–67

    Article  CAS  Google Scholar 

  12. A.S. Argon: Acta Metall., 1979, vol. 27, pp. 47–58

    Article  CAS  Google Scholar 

  13. K.M. Flores, D. Suh, P. Asoka-Kumar, P.A. Sterne, R.H. Howell, R.H. Dauskardt: J. Mater. Res., 2002, vol. 17, pp. 1153–61

    Article  CAS  Google Scholar 

  14. K. Hajlaoui, T. Benameur, G. Vaughan, A.R. Yavari: Scripta Mater., 2004, vol. 51, pp. 843–48

    Article  CAS  Google Scholar 

  15. P. De Hey, J. Sietsma, A. van den Beukel: Acta Mater., 1998, vol. 46, pp. 5873–82

    Article  Google Scholar 

  16. N.N. Medvedev, V.P. Voloshin: J. Struct. Chem., 2005, vol. 46, pp. 98–102

    Article  CAS  Google Scholar 

  17. P. Murali, U. Ramamurty, V. Shenoy: Phys. Rev. B, 2007, vol. 75, pp. 024203–07

    Article  CAS  Google Scholar 

  18. S. Sastry, T.M. Truskett, P.G. Debenedetti, S. Torquato, F.H. Stillinger: Molec. Phys., 1998, vol. 95, pp. 289–97

    Article  CAS  Google Scholar 

  19. P. Tuinstra, P.A. Duine, A. Van den Beukel, J. Sietsma: Acta Metall. Mater., 1995, vol. 43, pp. 2815–23

    Article  CAS  Google Scholar 

  20. K.M. Flores, B.P. Kanungo, S.C. Glade, P. Asoka-Kumar: J. Non-Cryst. Solids, 2007, vol. 353, pp. 1201–07

    Article  CAS  Google Scholar 

  21. K.M. Flores, E. Sherer, A. Bharathula, H. Chen, Y.C. Jean: Acta Mater., 2007, vol. 55, pp. 3403–11

    Article  CAS  Google Scholar 

  22. M.S. Daw, M.I. Baskes: Phys. Rev. Lett., 1983, vol. 50, pp. 1285–88

    Article  CAS  Google Scholar 

  23. H.N.G. Wadley, X. Zhou, R.A. Johnson: Mater. Res. Soc. Symp. Proc., 2001, vol. 672, pp. O4.1.1–14

    CAS  Google Scholar 

  24. H.N.G. Wadley, X. Zhou, R.A. Johnson, M. Neurock: Progr. Mater. Sci., 2001, vol. 46, pp. 329–77

    Article  CAS  Google Scholar 

  25. R.A. Johnson: Phys. Rev. B, 1989, vol. 39, pp. 12554–59

    Article  Google Scholar 

  26. A.F. Voter: in Intermetallic Compounds, J.H. Westbrook, R.L. Fleischer, eds., Wiley & Sons, New York, NY, 1994, pp. 77–90

    Google Scholar 

  27. H.S. Chen and Y. Waseda: Phys. Status Solidi (a), 1979, vol. 51, pp. 593–99

  28. A. Sadoc, Y. Calvayrac, A. Quivy, M. Harmelin, A.M. Flank: J. Non-Cryst. Solids, 1984, vol. 65, pp. 109–29

    Article  CAS  Google Scholar 

  29. G. Duan, D. Xu, Q. Zhang, G. Zhang, T. Cagin, W.L. Johnson, and W.A. Goddard: Phys. Rev. B, 2005, vol. 71, pp. 224208–17

  30. N.N. Medvedev, V.P. Voloshin, V.A. Luchnikov, M.L. Gavrilova: J. Comp. Chem., 2006, vol. 27, pp. 1676–92

    Article  CAS  Google Scholar 

  31. V.P. Voloshin, Y.I. Naberukhin: J. Phys.: Condensed Matter, 1993, vol. 5, pp. 5685–700

    Article  CAS  Google Scholar 

  32. J. Sietsma, J. Thijsse: Phys. Rev. B, 1995, vol. 52, pp. 3248–55

    Article  CAS  Google Scholar 

  33. T. Egami, Y. Waseda: J. Non-Cryst. Solids, 1984, vol. 64, pp. 113–34

    Article  CAS  Google Scholar 

  34. B.J. Gellatly, J.L. Finney: J. Molec. Biol., 1982, vol. 161, pp. 305–22

    Article  CAS  Google Scholar 

  35. B.J. Gellatly, J.L. Finney: J. Non-Cryst. Solids, 1981, vol. 50, pp. 313–29

    Article  Google Scholar 

  36. E. Clementi and D.L. Raimondi: J. Chem. Phys., 1963, vol. 38, pp. 2686–89

  37. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma: Nature, 2006, vol. 439, pp. 419–25

    Article  CAS  Google Scholar 

  38. W. Luo, W. Windl, A. Bharathula, and K.M. Flores: unpublished research, 2007

  39. J. Harris: Phys. Rev. B, 1985, vol. 31, pp. 1770–79

    Article  CAS  Google Scholar 

  40. J.D. Bernal: Proc. Roy. Soc. London, Ser. A, 1964, vol. 280, pp. 299–322

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science Foundation under NSF Award No. DMR-0449651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine M. Flores.

Additional information

This article is based on a presentation given in the symposium entitled “Bulk Metallic Glasses IV,” which occurred February 25–March 1, 2007 during the TMS Annual Meeting in Orlando, Florida under the auspices of the TMS/ASM Mechanical Behavior of Materials Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharathula, A., Luo, W., Windl, W. et al. Characterization of Open Volume Regions in a Simulated Cu-Zr Metallic Glass. Metall Mater Trans A 39, 1779–1785 (2008). https://doi.org/10.1007/s11661-008-9503-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9503-8

Keywords

Navigation