Skip to main content
Log in

Effect of Sc on Aging Kinetics in a Direct Chill Cast Al-Zn-Mg-Cu Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Sc additions on precipitation strengthening in a direct chill (DC) cast Al-Zn-Mg-Cu alloy was studied after natural and artificial aging. The microhardness, room temperature (RT) mechanical properties, and phase composition of the alloys were determined after different steps of aging. The strengthening mechanisms were discussed. It was shown that minor additions of Sc increased the strength of the Al-Zn-Mg-Cu alloy after casting and solution heat treatment, due to the precipitation of fine coherent Al3(Sc,Zr) particles. An analysis of the aging kinetics revealed that Sc had no effect on the natural aging, which was controlled by the formation and growth of Guinier–Preston (GP) I zones. On the other hand, the Sc additions accelerated the aging process at 120 °C and 150 °C within a period of time of the formation and growth of GP II zones and η′ particles. It was concluded that the presence of Sc accelerated the formation and growth of GP II zones in the Al-Zn-Mg-Cu alloys, which led to the earlier precipitation of the η′ phase. However, at longer aging times at 120 °C and 150 °C, the aging response of the Sc-containing alloys slowed down, due to faster coarsening of the η′ particles and their transformation into η particles. A model of the formation of vacancy-rich clusters (VRCs), precursors to GP zones, in the Al-Zn-Mg–based alloys was proposed. According to this model, the observed effects of Sc on aging are the result of the Sc-induced increase in the number density of the GP II clusters and the concentration of quenched-in solute-bound excess vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. PANDAT is a trademark of CompuTherm, LLC, Madison, WI

  3. Here and thereafter, the vacancy concentration is identified as the fraction of the empty atom sites in the unit volume of the crystal matrix.

References

  1. Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures, J.G. Kaufman, ed., ASM INTERNATIONAL, Materials Park, OH, 1999

  2. Aluminum and Aluminum Alloys, J.R. Davis, ed., ASM INTERNATIONAL, Materials Park, OH, 1993

  3. J.H. Auld, S.McK. Cousland: J. Austr. Inst. Met., 1974, vol. 19, pp. 194–99

    CAS  Google Scholar 

  4. F.A. Costello, J.D. Robson, P.B. Pragnell: Mater. Sci. Forum, 2002, vols. 396–402, pp. 757–62

    Google Scholar 

  5. P. Villars and L.D. Calvert: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM INTERNATIONAL, Materials Park, OH, 1991, vols. 1–4

  6. K. Stiller, P.J. Warren, V. Hansen, J. Angenete, J. Gjonnes: Mater. Sci. Eng., A, 1999, vol. A270, pp. 55–63

    CAS  Google Scholar 

  7. L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L.R. Wallenberg: Acta Mater., 2001, vol. 49, pp. 3443–51

    Article  CAS  Google Scholar 

  8. T. Engdahl, V. Hansen, P.J. Warren, K. Stiller: Mater. Sci. Eng., A, 2002, vol. A327, pp. 59–64

    CAS  Google Scholar 

  9. V. Hansen, O.B. Karlsen, Y. Langsrud, J. Gjønnes: Mater. Sci. Technol., 2004, vol. 20, pp. 185–93

    Article  CAS  Google Scholar 

  10. G. Sha, A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503–16

    Article  CAS  Google Scholar 

  11. A. Dupasquier, R. Ferragut, M.M. Iglesias, M. Massazza, R. Riontino, P. Mengucci, G. Barucca, C.E. Macchi, A. Somoza: Philos. Mag., 2007, vol. 87, pp. 3297–3323

    Article  CAS  Google Scholar 

  12. H. Löffler, I. Kovács, J. Lendvai: J. Mater. Sci., 1993, vol. 18, pp. 2215–40

    Article  Google Scholar 

  13. X.Z. Li, V. Hansen, J. Gjønnes, R. Wallenderg: Acta Mater. 1999, vol. 47, pp. 2651–59

    Article  CAS  Google Scholar 

  14. Handbook of Aluminum, G.E. Totten and D.S. MacKenzie, eds., Marcel Dekker, Inc., New York, NY, 2003, vol. 1, pp. 284–89 and 916–20

  15. X.J. Jiang, B. Noble, V. Hansen, J. Tafto: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1063–73

    Article  Google Scholar 

  16. A.K. Mukhopadhyay, G.J. Shiflet, S.R. Starke: Scripta Mater., 1990, vol. 24, pp. 307–12

    Article  CAS  Google Scholar 

  17. A.K. Mukhopadhyay, Q.B. Yang, S.B. Singh: Acta Metall. Mater., 1994, vol. 42, pp. 3083–91

    Article  CAS  Google Scholar 

  18. V.I. Elagin: Technology of Light Alloys, Tekhnologiya Legkikh Splavov, USSR, 1994, No. 9, pp. 5–14

  19. V.I. Elagin, V.V. Zakharova, T.D. Rostova: Met. Sci. Heat Treat., 1995, vol. 36 (7–8), pp. 375–80

    Google Scholar 

  20. O.N. Senkov, R.B. Bhat, S.V. Senkova: in Metallic Materials with High Structural Efficiency, O.N. Senkov, D.B. Miracle, S.A. Firstov, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 151–62

    Chapter  Google Scholar 

  21. Y.V. Milman, A.I. Sirko, D.V. Lotsko, D.B. Miracle, O.N. Senkov: Mater. Sci. Forum, 2002, vols. 396–402, pp. 1217–22

    Google Scholar 

  22. A.F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley, P.B. Pragnell: Mater. Sci. Eng., A, 2003, vol. 354, pp. 188–98

    Article  CAS  Google Scholar 

  23. O.N. Senkov, R.B. Bhat, S.V. Senkova, J.D. Schloz: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2115–26

    Article  CAS  Google Scholar 

  24. J. Royset, N. Ryum: Int. Mater. Rev., 2005, vol. 50, pp. 19–44

    Article  CAS  Google Scholar 

  25. O.N. Senkov: Advanced Aluminum Materials for Rocket Turbopump Rotors, SBIR Phase II Final Report, AFRL-PR-ED-TR-2006-0073, U.S. Air Force Research Laboratory, Edwards Air Force Base, CA, 2006, pp. 205–30

  26. O.N. Senkov, S.V. Senkova, M.G. Mendiratta, and D.B. Miracle: U.S. Patent 7,048,815, 2006

  27. O.N. Senkov, S.V. Senkova, M.G. Mendiratta, D.B. Miracle, Y.V. Milman, D.V. Lotsko, and A.I. Sirko: U.S. Patent 7,060,139, 2006

  28. L.I. Kaigorodova, E.I. Selnikhina, E.A. Tkachenko, O.G. Senatorova: Phys. Met. Metall., 1996, vol. 81, pp. 513–19

    Google Scholar 

  29. Y.L. Wu, F.H. Froes, C. Li, A. Alvarez: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1017–24

    Article  CAS  Google Scholar 

  30. D.B. Williams, C.B. Carter: Transmission Electron Microscopy, Plenum Press, New York, NY, 1996, pp. 629–30

    Google Scholar 

  31. S. Iwamura, Y. Miura: Acta Mater., 2004, vol. 52, pp. 591–600

    Article  CAS  Google Scholar 

  32. R. DeIasi, P.N. Adler: Metall. Trans. A, 1977, vol. 8A, pp. 1177–83

    CAS  Google Scholar 

  33. P.H. Adler, R. DeIasi: Metall. Trans. A, 1977, vol. 8A, pp. 1185–90

    CAS  Google Scholar 

  34. J.M. Papazian, R.J. DeIasi, P.N. Adler: Metall. Trans. A, 1980, vol. 11A, pp. 135–40

    CAS  Google Scholar 

  35. J.M. Papazian: Metall. Trans. A, 1982, vol. 13A, pp. 761–69

    Google Scholar 

  36. A. Deschamps, F. Livet, Y. Brechet: Acta Mater., 1999, vol. 47, pp. 281–92

    Article  CAS  Google Scholar 

  37. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu: Acta Mater., 2004, vol. 51, pp. 4589–99

    Article  CAS  Google Scholar 

  38. PANDAT™, Version 5.0, CompuTherm, LLC, Madison, WI

  39. O.N. Senkov and M.R. Shaghiev: UES, Inc., Dayton, Ohio, unpublished research, 2006

  40. B.L. Ou, J.G. Yang, M.Y. Wei: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1760–73

    Article  CAS  Google Scholar 

  41. S. Iwamura, Y. Miura: Acta Mater., 2004, vol. 52, pp. 591–600

    Article  CAS  Google Scholar 

  42. J. Murray, A. Peruzzi, J.P Abriata: J. Phase Equilib., 1992, vol. 13, pp. 277–91

    Article  CAS  Google Scholar 

  43. H.H. Jo, S.I. Fujikawa: Mater. Sci. Eng. 1993, vol. A171, pp. 151–61

    CAS  Google Scholar 

  44. J. Burke: J. Less Common Met., 1972, vol. 28, pp. 441–56

    Article  CAS  Google Scholar 

  45. S. Özbilen, H.M. Flower: Acta Metall., 1989, vol. 37, pp. 2993–3000

    Article  Google Scholar 

  46. R.O. Simmons, R.W. Balluffi: Phys. Rev., 1960, vol. 117, pp. 52–61

    Article  CAS  Google Scholar 

  47. Y. Miura, C. Joh, T. Katsube: Mater. Sci. Forum, 2000, vols. 331–337, pp. 1031–36

    Article  Google Scholar 

  48. O. Kubaschewski, C.B. Alcock, P.J. Spencer: Materials Thermochemistry, 6th ed., Pergamon Press, Oxford, United Kingdom, 1993

    Google Scholar 

  49. J.D. Eshelby: in Solid State Physics, F. Seitz and D. Turnbull, eds., Academic Press, New York, NY, 1956, vol. 3, pp. 77–144

  50. S.K. Maloney, K. Hono, I.J. Polmear, S.P. Ringer: Scripta Mater. 1999, vol. 41, pp. 1031–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. D.B. Miracle and C.F. Woodward, United States Air Force Research Laboratory (Wright–Patterson Air Force Base, OH), Dr. R. Wheeler, UES, Inc. (Dayton, OH), and Prof. M. Mills, Ohio State University (Columbus, OH), for useful technical help and discussions. This work was financially supported through the United States Air Force Contracts Nos. F04611-02-C-0014 (Capt. William Allen, Program Manager) and FA8650-04-D-5233 (Dr. Joan Fuller, Program Manager).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.N. Senkov.

Additional information

Manuscript submitted April 4, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senkov, O., Senkova, S. & Shagiev, M. Effect of Sc on Aging Kinetics in a Direct Chill Cast Al-Zn-Mg-Cu Alloy. Metall Mater Trans A 39, 1034–1053 (2008). https://doi.org/10.1007/s11661-008-9485-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9485-6

Keywords

Navigation