Skip to main content
Log in

Transmission Electron Microscopy Characterization of the Bake-Hardening Behavior of Transformation-Induced Plasticity and Dual-Phase Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of prestraining (PS) and bake hardening (BH) on the microstructures and mechanical properties has been studied in transformation-induced plasticity (TRIP) and dual-phase (DP) steels after intercritical annealing. The DP steel showed an increase in the yield strength and the appearance of the upper and lower yield points after a single BH treatment as compared with the as-received condition, whereas the mechanical properties of the TRIP steel remained unchanged. This difference appears to be because of the formation of plastic deformation zones with high dislocation density around the “as-quenched” martensite in the DP steel, which allowed carbon to pin these dislocations, which, in turn, increased the yield strength. It was found for both steels that the BH behavior depends on the dislocation rearrangement in ferrite with the formation of cell, microbands, and shear band structures after PS. The strain-induced transformation of retained austenite to martensite in the TRIP steel contributes to the formation of a complex dislocation structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips, Holland.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. Y. Sakuma, O. Matsumura, H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98

    CAS  Google Scholar 

  2. R.G. Davies: Metall. Trans. A, 1978, vol. 9A, pp. 41–52

    CAS  Google Scholar 

  3. A.H. Nakagawa, G. Thomas: Metall. Trans. A, 1985, vol. 16A, pp. 831–40

    CAS  Google Scholar 

  4. O. Matsumura, Y. Sakuma, H. Takechi: Trans. ISIJ, 1987, vol. 27, pp. 570–79

    CAS  Google Scholar 

  5. M.S. Rashid: Proc. AIME Symp., TMS-AIME, Warrendale, PA, 1994, vol. 244, pp. 1–24

  6. O. Matsumura, Y. Sakuma, H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301–06

    Article  CAS  Google Scholar 

  7. G.R. Speich, V.A. Demarest: Metall. Trans. A, 1981, vol. 12A, pp. 1419–28

    Google Scholar 

  8. V.F. Zackay, E.R. Parker, D. Fahr, R. Bush: Trans. ASM, 1967, vol. 60, pp. 252–59

    CAS  Google Scholar 

  9. L.J. Baker, S.R. Daniel, J.D. Parker: Mater. Sci. Technol., 2002, vol. 18, pp. 355–68

    Article  CAS  Google Scholar 

  10. A.H. Cottrell, B.A. Bilby: Proc. Phys. Soc., 1949, vol. A62, pp. 49–62

    Google Scholar 

  11. T. Senuma: ISIJ Int., 2001, vol. 41, pp. 520–32

    CAS  Google Scholar 

  12. O.M. Faral and T. Hourman: Proc. 41st MWSP Conf., ISS, Baltimore, MD, 1999, vol. XXXVII, pp. 253–64

  13. B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303

    Article  Google Scholar 

  14. M. Kinoshita, A. Nishimoto: CAMP-ISIJ, 1990, vol. 3, pp. 1780–85

    Google Scholar 

  15. T. Furukawa, H. Mrikawa, M. Endo, H. Takechi, K. Koyama, O. Akisue, T. Yamada: Trans. ISIJ, 1981, vol. 21, pp. 812–18

    Google Scholar 

  16. T. Waterschoot, A.K. De, S. Vandeputte, B.C. De Cooman: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 781–91

    CAS  Google Scholar 

  17. T. Huper, S. Endo, N. Ishikawa, K. Osawa: ISIJ Int., 1999, vol. 39, pp. 288–94

    CAS  Google Scholar 

  18. A.K. De, S. Vandeputte, B.C. De Cooman: Scripta Mater., 2001, vol. 44, pp. 695–700

    Article  CAS  Google Scholar 

  19. D. Kalish, M. Cohen: Mater. Sci. Eng., 1970, vol. 6, pp. 156–66

    Article  CAS  Google Scholar 

  20. A.K. De, K. De Blauwe, S. Vandeputte, B.C. De Cooman: J. Alloys Compd., 2000, vol. 310, pp. 405–10

    Article  CAS  Google Scholar 

  21. G.E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw-Hill, New York, NY, 2001, p. 287

    Google Scholar 

  22. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, London, 1978, pp. 411–15

    Google Scholar 

  23. M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29, pp. 1011–16

    Article  CAS  Google Scholar 

  24. P.B. Hirsch, R.B. Nicholson, A. Howie, D.W. Pashley, M.J. Whelan: Electron Microscopy of Thin Crystals, Butterworth and Co., London, 1965, pp. 51–54

    Google Scholar 

  25. K. Sakata, S. Satoh, T. Kato, and O. Hashimoto: ISIJ Int., 1994, pp. 279–88

  26. A.K. De, S. Vandeputte, B.C. De Cooman: Scripta Mater., 1999, vol. 41, pp. 831–37

    Article  CAS  Google Scholar 

  27. A.K. De, K. De Blauwe, S. Vandeputte, B.C. De Cooman: J. Alloys Compd., 2000, vol. 310, pp. 405–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Ford Motor Company and the Australia Research Council (ARC) Linkage Scheme. One of the authors (PDH) also acknowledges the support of an ARC Federation fellowship. In addition, the authors acknowledge the assistance of Mr. B. Clarke with tensile testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.B. Timokhina.

Additional information

Manuscript submitted September 17, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timokhina, I., Hodgson, P. & Pereloma, E. Transmission Electron Microscopy Characterization of the Bake-Hardening Behavior of Transformation-Induced Plasticity and Dual-Phase Steels. Metall Mater Trans A 38, 2442–2454 (2007). https://doi.org/10.1007/s11661-007-9258-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9258-7

Keywords

Navigation