Skip to main content
Log in

Dwell Fatigue Microstructure in a Near-α Titanium Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

The dwell fatigue microstructure of a near-α titanium alloy was studied by optical microscopy and transmission electron microscopy. Optical microscopy revealed primary α grains as being crack initiation sites. The majority of the cracks nucleated on and propagated along specific crystal planes in the primary α grains perpendicular to the α platelets in their neighboring transformed β grains. The propagation of the cracks is effectively blocked by α platelets with axes parallel to the directions of crack in the transformed β grains. Transmission electron microscopy revealed the formation of different types of slip bands across α platelet boundaries in transformed β grains and dislocation networks and subgrain boundaries in primary α grains. The most active slip system was identified as the <a> type dislocation, which slips on the basal planes of α phase. Slip bands in transformed β grains were found to be on the basal planes of the α colonies, perpendicular to the α platelets. The retained β phase at the α platelet boundaries have limited effect on blocking the propagation of the slip bands. The dwell effects are explained in terms of the dislocation movement in relation to the crystallography of the primary α grains and α platelets in the transformed β grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. TENUPOL ELECTROPOLISHER is a trademark of Struers Inc., Cleveland, OH.

  2. JEOL is a trademark of JEOL Ltd., Tokyo.

  3. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. Neal D.F. (1985) In: Jutjering G., Zwicker U., Bunk W. (Eds) Titanium Science and Technology. Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, pp. 2419–24.

    Google Scholar 

  2. Blenkinsop P.A. (1993) In: Froes F.H., Caolan I. (Eds) Titanium ’92 Science and Technology. TMS, Warrendale, PA, pp. 15–26

    Google Scholar 

  3. R.R. Boyer: Mater. Sci. Eng. A, 1996, vol. 213A, pp. 103–14

    Google Scholar 

  4. M.R. Bache, M. Cope, H.M. Davies, W.J. Evans, G. Harrison: Int. J. Fatigue, 1997, 19 (1):S83–S88

    Article  CAS  Google Scholar 

  5. C. Ramachandra, A.K. Singh, G.M.K. Sarma: Metall. Trans. A, 1993, 24A:1273–80

    CAS  Google Scholar 

  6. C.G. Rhodes, N.E. Paton: Metall. Trans. A, 1979, 10A:209–16

    CAS  Google Scholar 

  7. D. Banerjee, J.E. Allison, F.H. Froes, and J.C. Williams: in Titanium Science and Technology, G. Lutjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, 1985, pp. 1519–26

  8. Issac G.H., Hammond C. (1985) In: Lutjering G., Zwicker U., Bunk W. (Eds) Titanium Science and Technology. Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, pp. 1605–12

    Google Scholar 

  9. M.R. Bacher: Int. J. Fatigue, 2003, 25:1079–87

    Article  Google Scholar 

  10. P. Pugh: The Magic of a Name, the Rolls-Royce Story, vol. 2, The Power Behind the Jet 1945–1987, Icon Books, Cambridge, United Kingdom, 2000, 344 pp

  11. Woodfield A.P., Gorman M.D., Sutliff J.A., Corderman R.R. (1999) In: Boyer R.R., Eylon D., Lutjering G. (Eds) Fatigue Behavior of Titanium Alloys. TMS-AIME, Warrendale, PA, pp. 111–18

    Google Scholar 

  12. G.J. Baxter, W.M. Rainforth, L. Grabowsky: Acta Mater., 1996, 44:3453–63

    Article  CAS  Google Scholar 

  13. Z. Song, D.W. Hoeppner: Int. J. Fatigue, 1989, 11:85–90

    Article  CAS  Google Scholar 

  14. W.J. Evans: Mater. Sci. Eng. A, 1998, 243A:89–96

    Google Scholar 

  15. W.J. Evans, M.R. Bache: Int. J. Fatigue, 1994, 16:443–52

    Article  CAS  Google Scholar 

  16. S. Hardt, H.J. Maier, H.-J. Christ: Int. J. Fatigue, 1999, 21:779–89

    Article  CAS  Google Scholar 

  17. R.J. Wilson, V. Randle, W.J. Evans: Phil. Mag. A, 1997, 76A:471–80

    Article  Google Scholar 

  18. M.L. Thomsen and D.W. Hoeppner: FAA/NASA Int. Symp Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Nasa Langley Research Center, Hampton, VA, 1994, pp. 871–89

  19. W.D. Zeng, Y.G. Zhou: Mater. Sci. Eng. A, 2000, 290A:33–38

    Google Scholar 

  20. J.W. Edington: Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold Co., New York, NY, 1976

  21. H.M. Flower: Mater. Sci. Technol., 1990, 6:1082–92

    CAS  Google Scholar 

  22. F.J. Humphreys, and M. Hatherly: in Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Tarrytown, NY, 1995, 488 pp

  23. D.F. Neal, and S.P. Fox: in Titanium ’92 Science and Technology, F.H. Froes, I. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 287–94

  24. W.T. Donlon, J.E. Allison, and J.V. Lasecki: in Titanium ’92 Science and Technology, F.H. Froes and I. Cap lan, eds., TMS, Warrendale, PA, 1993, pp. 295–302

  25. J.L. Murray: Phase Diagrams of Binary Titanium Alloys, ASM INTERNATIONAL, Metals Park, OH, 1987

  26. C. Ramachandra and V. Singh: Metall. Trans. A, 1982, vol. 13A, pp. 771–75

    Google Scholar 

  27. W.G. Burgers: Physica (Utrecht), 1934, pp. 561–86

  28. J.C. Williams: Proc. Conf. Titanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, vol. 3, pp. 1433–94

  29. F.S. Lin, E.A. Starke Jr., S.B. Chakrabortty, A. Gysler: Metall. Trans. A, 1984, 15A:1229–46

    CAS  Google Scholar 

  30. A. Ambard, L. Guetaz, F. Louchet, D. Guichard: Mater. Sci. Eng., 2001, 319A–321A:404–08

    Google Scholar 

  31. J. White, M.H. Loretto, R.E. Smallman, and M.R. Winstone: Proc. 5th World Conf. on Titanium, G. Lutjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, 1985, vol. IV, pp. 2297–2304

  32. A.P. Woodfield, P.J. Postans, M.H. Loretto, R.E. Smallman: Acta Metall., 1988, 36:507–15

    Article  CAS  Google Scholar 

  33. P.G. Partridge: Metall. Rev., 1967, 1:169–94

    Google Scholar 

  34. H. Renner, H. Kestler, and H. Mughrabi: in Fatigue '96, G. Lutjering and H. Nowack, eds., Elsevier Applied Science, London, 1996, vol. II, pp. 935–40

  35. A. Gysler, S. Weissmann: Mater. Sci. Eng., 1977, 27:181–93

    Article  CAS  Google Scholar 

  36. G. Lutjering, S. Weissmann: Acta Metall., 1970, 18:785–95

    Article  Google Scholar 

  37. S. Farenc, D. Caillard, A. Couret: Acta Metall. Mater., 1993, 41:2701–09

    Article  CAS  Google Scholar 

  38. A. Kelly, G.W. Groves, P. Kidd 2000 Crystallography and Crystal Defects. John Wiley & Sons, New York, NY

    Google Scholar 

  39. T.R. Bieler, S.L. Semiatin: Int. J. Plast., 2002, 18:1165–89

    Article  CAS  Google Scholar 

  40. J.C. Williams, R.G. Baggerly, N.E. Paton: Metall. Mater. Trans. A, 2002, 33A:837–50

    CAS  Google Scholar 

  41. G. Lutjering and J.C. Williams: Titanium, Springer, New York, NY, 2003

Download references

Acknowledgment

The authors acknowledge Pratt and Whitney Canada for its financial support and permission for this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang.

Additional information

Manuscript submitted June 13, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Vo, P., Jahazi, M. et al. Dwell Fatigue Microstructure in a Near-α Titanium Alloy. Metall Mater Trans A 38, 831–839 (2007). https://doi.org/10.1007/s11661-007-9105-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9105-x

Keywords

Navigation