Skip to main content
Log in

Microstructural evolution during hot working of ti aluminide alloys: Influence of phase constitution and initial casting texture

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot-working behavior of γ(TiAl)-based alloys was investigated in order to understand fundamental aspects of the evolution of the microstructure and to establish guidelines for advanced alloy design and processing. The investigations involved a wide range of Al compositions and are based on metallographic investigations of the deformed samples. Particular emphasis was placed on the effects of phase composition and casting texture. It was found that the behavior of dynamic recrystallization was significantly influenced by the Al content of the alloys. Under the same deformation conditions. dynamic recrystallization was fastest for alloys with nearly stoichiometric composition, whereas the recrystallization kinetics decreased for lower or higher Al contents. This result can be attributed to the effect of the Al concentration on the micromechanisms of deformation and diffusion as well as on the initial cast microstructure, which changed from fully lamellar to equiaxed near-γ microstructures by raising the Al content from 45 to 50 at. pct. Further, it was observed that the casting texture, i.e., the orientation of lamellae with respect to the deformation axis, significantly influenced the recrystallization behavior. In this respect, the development of shear bands due to kinking and bending of lamellae is concluded to play an important role in the recrystallization behavior and seems in general, to be a particular feature of the microstructural evolution of lamellar alloys on hot working.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-W. Kim and D.M. Dimiduk: in Structurals Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 531–43.

    Google Scholar 

  2. S.L. Semiatin, V. Seetharaman, and I. Weiss: Mater. Sci. Eng. A, 1998, vol. 243, pp. 1–24.

    Article  Google Scholar 

  3. D.M. Dimiduk, P.L. Martin, and Y.-W. Kim. Mater. Sci. Eng. A, 1998, vol. 243, pp. 66–76.

    Article  Google Scholar 

  4. F. Appel, H. Clemens, and H. Kestler: in Intermetallic compounds, Principles and Practice, J.H. Westbrook and R.L. Fleischer, eds., John Wiley, Chichester, United Kingdom, 2002, vol. 3, pp. 617–42.

    Chapter  Google Scholar 

  5. V. Imayev, R. Imayev, and A. Kuznetsov: in Gamma Titanium Aluminides 2003, Y.-W. Kim, H. Clemens, and A.H. Rosenberger, eds., TMS, Warrendale, PA, 2003, pp. 311–18.

    Google Scholar 

  6. V. Küstner, M. Oehring, A. Chatterjee, V. Güther, H.-G. Brokmeier, H. Clemens, and F. Appel: in Gamma Titanium Aluminides 2003, Y.-W. Kim, H. Clemens, and A.H. Rosenberger, eds. TMS, Warrendale, PA, 2003, pp. 89–96.

    Google Scholar 

  7. R.M. Imayev, G.A. Salishchev, V.M. Imayev, M.R. Shagiev, A.V. Kuznetsov, F. Appel, M. Oehring, O.N. Senkov, and F.H. Froes: in Gamma Titanium Aluminides 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 565–72.

    Google Scholar 

  8. F. Appel, P.A. Beaven, and R. Wagner: Acta Metall. Mater., 1993. vol. 41. pp. 1721–32.

    Article  CAS  Google Scholar 

  9. I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, and K. Ishida: Acta Mater., 2000, vol. 48, 3113–23.

    Article  CAS  Google Scholar 

  10. D.E. Larsen, S. Kampe, and L. Christodoulou: in Intermetallic Matrix Composites, Materials Research Society Symposia Proceedings. D.L. Anton, R. McMeeking, D. Miracle, and P. Martin, eds. Materials Research Society, Pittsburgh, PA, 1990, vol. 194, pp. 285–92.

    Google Scholar 

  11. M. De Graef, J.P.A. Löfvander, C. McCullough, and C.G. Levi; Acta Metall. Mater., 1992, vol. 40, pp. 3395–406.

    Article  Google Scholar 

  12. M. Yamaguchi and Y. Umakoshi: Progr. Mater. Sci., 1990, vol. 34, pp. 1–148.

    Article  CAS  Google Scholar 

  13. F. Appel and R. Wagner. Mater. Sci. Eng. R. 1998, vol. 22, pp. 187–268.

    Article  Google Scholar 

  14. Y. Umakoshi, T. Nakano, and T. Yamane: Mater. Sci. Eng. A, 1992, vol. 152, pp. 81–88.

    Article  Google Scholar 

  15. S. Zghal, S. Naka, and A. Couret: Acta Mater., 1997, vol. 45, pp. 3005–15.

    Article  CAS  Google Scholar 

  16. F. Appel, U. Sparka, and R. Wagner: Intermetallics, 1999, vol. 7, 325–34.

    Article  CAS  Google Scholar 

  17. J.D.H. Paul and F. Appel: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2103–11.

    Article  CAS  Google Scholar 

  18. F. Appel: in Advances in Twinning, S. Ankem and C.S. Pande, eds., TMS, Warrendale, PA, 1999, pp. 171–86.

    Google Scholar 

  19. F. Appel: Mater. Sci. Eng A, 2002, vol. 317, pp. 115–27.

    Google Scholar 

  20. M.H. Yoo and C.L. Fu: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 49–63.

    Article  CAS  Google Scholar 

  21. Y. Shirai and M. Yamaguchi: Mater. Sci. Eng. A, 1992, vol. 152, pp. 173–81.

    Article  Google Scholar 

  22. U. Brossmann, R. Würschum, K. Badura, and H.-E. Schaefer. Phys. Rev. B, 1994, vol. 49, pp. 6457–61.

    Article  CAS  Google Scholar 

  23. C. Woodward, S.A. Kajihara, S.I. Rao, and D.M. Dimiduk: in Gamma Titanium Aluminides 1999, Y.-W. Kim, D.M. Dimiduk, and M.H. Loretto, eds., TMS, Warrendale, PA, 1999, pp. 49–58.

    Google Scholar 

  24. F. Appel, U. Christoph, and M. Oehring: Mater. Sci. Eng. A, 2002, vols. 329–331, pp. 780–87.

    Google Scholar 

  25. U. Fröbel and F. Appel: Acta Mater., 2002, vol. 50, pp. 3693–707.

    Article  Google Scholar 

  26. C. Herzig, T. Przeorski, and Y. Mishin: Intermetallics, 1999, vol. 7, pp. 389–404.

    Article  CAS  Google Scholar 

  27. Y. Mishin and C. Herzig: Acta Mater. 2000, vol. 48, pp. 589–623.

    Article  CAS  Google Scholar 

  28. T. Fujiwara, A. Nakamura, M. Hosomi, S.R. Nishitani, Y. Shirai, and M. Yamaguchi: Phil. Mag. A, 1990, vol. 61, pp. 591–606.

    Article  CAS  Google Scholar 

  29. Y. Umakoshi and T. Nakano: Acta Metall. mater., 1993, vol. 41, pp. 1155–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

R.M. IMAYEV and V.M. IMAYEV, Senior Scientists, formerly with the GKSS Research Centre, Institute for Materials Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imayev, R.M., Imayev, V.M., Oehring, M. et al. Microstructural evolution during hot working of ti aluminide alloys: Influence of phase constitution and initial casting texture. Metall Mater Trans A 36, 859–867 (2005). https://doi.org/10.1007/s11661-005-1015-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-1015-1

Keywords

Navigation