Skip to main content
Log in

Fatigue crack initiation and propagation of binder-treated powder metallurgy steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Many of the targeted applications for powder-metallurgy materials, particularly in the automotive industry, undergo cyclic loading. It is, therefore, essential to examine the fatigue mechanisms in these materials. The mechanisms of fatigue-crack initiation and propagation in ferrous powder-metallurgy components have been investigated. The fatigue mechanisms are controlled primarily by the inherent porosity present in these materials. Since most, if not all, fatigue cracks initiate and propagate at the specimen surface, surface replication was used to determine the role of surface porosity in relation to fatigue behavior. Surface replication provides detailed information on both initiation sites and on the propagation path of fatigue cracks. The effect of microstructural features such as pore size and pore shape, as well as the heterogeneous microstructure on crack deflection, was examined and is discussed. Fracture surfaces were examined to elucidate a mechanistic understanding of fatigue processes in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Chawla, G. Fillari, and K.S. Narasimhan: in Powder Materials: Current Research and Industrial Practices, F.D.S. Marquis, ed., TMS, Warrendale, PA, 1999, p. 247.

    Google Scholar 

  2. F.J. Semel: Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1989, p. 9.

    Google Scholar 

  3. S.H. Luk and J.A. Hamill, Jr.: Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1993, p. 153.

    Google Scholar 

  4. N. Chawla, S. Polasik, K.S. Narasimhan, M. Koopman, and K.K. Chawla: Int. J. Powder Metal., 2001, vol. 37, pp. 49–57.

    CAS  Google Scholar 

  5. N. Chawla, T.F. Murphy, K.S. Narasimhan, M. Koopman, and K.K. Chawla: Mater. Sci. Eng. A, 2001, vol. A308, pp. 180–88.

    CAS  Google Scholar 

  6. A. Hadrboletz and B. Weiss: Int. Mater. Rev., 1997, vol. 42, pp. 1–44.

    CAS  Google Scholar 

  7. H. Danninger, D. Spoljaric, and B. Weiss: Int. J. Powder Metall., 1997, vol. 33, pp. 43–53.

    CAS  Google Scholar 

  8. J. Holmes and R.A. Queeney: Powder Metall., 1985, vol. 28, pp. 231–35.

    CAS  Google Scholar 

  9. K.D. Christian and R.M. German: Int. J. Powder Metall., 1995, vol. 31, pp. 51–61.

    CAS  Google Scholar 

  10. U. Lindstedt, B., Karlsson, and R. Masini: Int. J. Powder Metall., 1997, vol. 33, pp. 49–61.

    CAS  Google Scholar 

  11. S. Suresh: Fatigue of Materials, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1998, p. 541.

    Google Scholar 

  12. N. Chawla, C. Andres, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2843–54.

    CAS  Google Scholar 

  13. M.H. Swain: Small Crack Test Methods, ASTM STP 1149, ASTM, Philadelphia, PA, 1992, pp. 34–56.

    Google Scholar 

  14. M. Caton, J.W. Jones, J.M. Boileau, and J.E. Allison: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3055–68.

    CAS  Google Scholar 

  15. J.A. Lund: Int. J. Powder Metall. Powder Technol., 1984, vol. 20, pp. 141–48.

    CAS  Google Scholar 

  16. Z.R. Xu, K.K. Chawla, A. Wolfenden, A. Neuman, G.M. Liggett, and N. Chawla: Mater. Sci. Eng., 1995, vol. 203A, pp. 75–80.

    Google Scholar 

  17. U. Lindstedt and B. Karlsson: Advances in Powder Metallurgy & Particulate Materials, compiled by T.M. Cadle and K.S. Narasimhan, MPIF, Princeton, NJ, 1996, vol. 5, pp. 17–35.

    Google Scholar 

  18. K.V. Sudhakar: Int. J. Fatigue, 2000, vol. 22, pp. 729–34.

    Article  CAS  Google Scholar 

  19. D.A. Lukasak and D.A. Koss: Composites, 1993, vol. 24, p. 262.

    Article  CAS  Google Scholar 

  20. N. Chawla, L.C. Davis, C. Andres, J.E. Allison, and J.W. Jones: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 951–57.

    Article  CAS  Google Scholar 

  21. S.M. McGuire and M.E. Fine: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1267–71.

    CAS  Google Scholar 

  22. H. Drar and A. Bergmark: Fatigue Fract. Eng. Mater. Struct., 1997, vol. 20, pp. 1319–30.

    CAS  Google Scholar 

  23. H. Drar, Mater. Characterization, 2000, vol. 45, pp. 211–20.

    Article  CAS  Google Scholar 

  24. C. Laird: Fatigue Crack Propagation, Special Technical Publication 415, ASTM, Philadelphia, PA, pp. 131–68.

  25. D. Rodzinak and M. Slesar: Powder Metall. Int., 1980, vol. 12, pp. 127–30.

    CAS  Google Scholar 

  26. I.S. Raju and J.C. Newman: Fracture Mechanics, ASTM STP 905, J.H. Underwood, R. Chait, C.W. Smith, D.P. Wilhem, W.A. Andrews, and J.C. Newman, eds. ASTM, Philadelphia, PA, 1986, pp. 789–805.

    Google Scholar 

  27. S. Carabajar, C. Verdu, A. Hamel, and R. Fougeres: Mater. Sci. Eng., 1998, vol. A257, pp. 225–34.

    CAS  Google Scholar 

  28. T.M. Cimino, A.H. Graham, and T.F. Murphy: Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1998.

    Google Scholar 

  29. S. Suresh: Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  30. S. Suresh: Metall. Trans. A, 1985, vol. 16A, p. 249.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polasik, S.J., Williams, J.J. & Chawla, N. Fatigue crack initiation and propagation of binder-treated powder metallurgy steels. Metall Mater Trans A 33, 73–81 (2002). https://doi.org/10.1007/s11661-002-0006-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0006-8

Keywords

Navigation