Skip to main content
Log in

Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three kinds of duplex stainless steel, with different ferrite-to-austenite ratios, were deformed in torsion over the temperature range 900 °C to 1200 °C; the corresponding microstructural evolution was observed and correlated with the deformation conditions. The shapes of the high-temperature flow curves depend strongly on the volume fractions of the phases, the characteristics of the ferrite-austenite interface, and the active softening mechanism. At low volume fractions of austenite, the mechanical behavior is determined by the ferrite matrix and the flow curves are typical of materials that soften by continuous dynamic recrystallization. When the volume fraction of austenite is increased, coherent γ particles distributed within the grains and at the grain boundaries hinder the deformation of the softer α matrix, increasing both the yield and the peak stress. These peaked flow curves are characterized by rapid work hardening followed by extensive flow softening; under these conditions, the hard austenite particles become aligned with the deformation direction after large strains. At high volume fractions of austenite (∼50 pct), the material tends to form a duplex structure, with the flow curves displaying extended work-hardening and work-softening regions; however, a drastic decrease is observed in ductility because of the dissimilar plastic behaviors of the two phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.D. Solomon and T.M. Devine, Jr.: in Duplex Stainless Steels, R.A. Lula, ed., ASM, Metals Park, OH, 1982, pp. 693–756.

    Google Scholar 

  2. J.-O. Nilsson: Mater. Sci. Technol., 1992, vol. 8, pp. 685–700.

    CAS  Google Scholar 

  3. T. Kawasaki, I. Takada, H. Ohtsubo, and S. Suzuki: Kawasaki Steel Technical Report No. 14, Mar. 1986, pp. 59–60.

  4. N. Akdut and J. Foct: Iron Steel Inst. Jpn. Int., 1996, vol. 36, pp. 883–92.

    CAS  Google Scholar 

  5. P. Richards and T. Sheppard: Mater. Sci. Technol., 1986, vol. 2, pp. 836–40.

    CAS  Google Scholar 

  6. K. Kato, Y. Saito, and T. Sakai: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 1050–54.

    CAS  Google Scholar 

  7. W. Roberts, H. Boden, and B. Ahlblom: Met. Sci., 1979, vol. 13, pp. 195–205.

    Article  CAS  Google Scholar 

  8. H.J. McQueen, N.D. Ryan, and E. Evangelista: Mater. Sci. Forum, 1993, vols. 113–115, pp. 435–40.

    Google Scholar 

  9. P. Cizek and B.P. Wynne: Mater. Sci. Eng., 1997, vol. A230, pp. 88–94.

    CAS  Google Scholar 

  10. J.B. Arboledas, J.L.M. Tirado, and R.S. Rodriguez: Proc. Int. Congr. Stainless Steels 96, Dusseldorf/Neuss, June 1996, VDEh (Verein Deutscher Eisenhütten-leute), Düsseldorf, 1996, pp. 116–21.

    Google Scholar 

  11. S.L. Semiatin, G. Lahoti, and J.J. Jonas: ASM Metals Handbook, 9th ed., Metals Park, OH, 1985, vol. 8, pp. 154–84.

  12. J.W. Pugh and J.O. Niebest: Trans. AIME, 1950, vol. 188, pp. 268–76.

    CAS  Google Scholar 

  13. C.M. Sellars and W.J.McG. Tegart: Mem. Sci. Rev. Met., 1966, vol. 63, pp. 731–46.

    CAS  Google Scholar 

  14. L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665–72.

    Article  Google Scholar 

  15. Y. Maehara: Metall. Trans. A, 1991, vol. 22A, pp. 1083–91.

    CAS  Google Scholar 

  16. H.L. Andrade, M.G. Akben, and J.J. Jonas: Metall. Trans. A, 1983, vol. 14A, pp. 1967–77.

    CAS  Google Scholar 

  17. P.R. Cetlin, S. Yue, J.J. Jonas, and T.M. Maccagno: Metall. Trans. A, 1993, vol. 24A, pp. 1543–53.

    CAS  Google Scholar 

  18. J. Baczynski and J.J. Jonas: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 447–62.

    Article  CAS  Google Scholar 

  19. A. Belyakov, R. Kaibyshey, and R. Zaripova: Mater. Sci. Forum, 1993, vols. 113–115, pp. 385–90.

    Article  Google Scholar 

  20. C.G. Schmidt, C.M. Young, B. Walser, R.H. Klundt, and O.D. Sherby: Metall. Trans. A, 1982, vol. 13A, pp. 447–56.

    CAS  Google Scholar 

  21. E.L. Brown, T.A. Whipple, and G. Krauss: in Duplex Stainless Steels, R.A. Lula, ed., ASM, Metals Park, OH, 1982, pp. 665–91.

    Google Scholar 

  22. E. Hornbogen: Acta Metall., 1984, vol. 32, pp. 615–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balancin, O., Hoffmann, W.A.M. & Jonas, J.J. Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures. Metall Mater Trans A 31, 1353–1364 (2000). https://doi.org/10.1007/s11661-000-0254-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0254-4

Keywords

Navigation