Skip to main content
Log in

Damage leading to ductile fracture under high strain-rate conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Quantitative metallographic studies of damage evolution leading to ductile fracture under high strain-rate loading conditions are presented. A model material is considered, namely, leaded brass, which contains a dispersed globular lead phase that acts as void nucleation sites. Interrupted tensile split Hopkinson bar tests have been performed to capture the evolution of porosity and void aspect ratio with deformation at strain rates up to 3000 s−1. Both uniaxial and notched specimen geometries were considered to allow the effects of remote stress triaxiality to be investigated. Plate impact testing has also been performed to investigate the evolution of damage under the intense tensile triaxiality and extremely high rates of deformation (105 s−1) occurring within a spall layer. Quantitative metallographic measurements of damage within deformed specimens are used to assess predictions from a Gurson-based constitutive model implemented within an explicit dynamic finite element code. A stress-controlled void nucleation treatment is shown to capture the effect of triaxiality on damage initiation for the range of experiments considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Rogers: Trans. TMS-AIME, 1960, vol. 218, pp. 498–506.

    Google Scholar 

  2. S.H. Goods and L.M. Brown: Acta Metall., 1979, vol. 27, pp. 1–15.

    Article  CAS  Google Scholar 

  3. D.R. Curran, L. Seaman, and D.A. Shockey: Phys. Rep., 1987, vol. 147, pp. 253–88.

    Article  CAS  Google Scholar 

  4. J.R. Fisher and J. Gurland: Met. Sci., 1981, vol. 15, pp. 185–202.

    Article  CAS  Google Scholar 

  5. R.J. Bourcier, D.A. Koss, R.E. Smelser, and O. Richmond: Acta Metall., 1986, vol. 34, pp. 2443–53.

    Article  CAS  Google Scholar 

  6. J.R. Rice and D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  7. B. Budiansky, J.W. Hutchinson, and S. Slutsky: in Mechanics of Solids, The Rodney Hill Anniversary Volume, H.G. Hopkins and M.J. Sewell, eds., Pergamon Press, Oxford, United Kingdom, 1982, pp. 13–45.

    Google Scholar 

  8. M.J. Worswick and R.J. Pick: J. Mech. Phys. Solids, 1990, vol. 38, pp. 601–25.

    Article  Google Scholar 

  9. M.J. Worswick and R.J. Pick: J. Appl. Mech., 1991, vol. 58, pp. 631–38.

    CAS  Google Scholar 

  10. E.M. Dubensky and D.A. Koss: Metall. Trans. A, 1987, vol. 18A, pp. 1887–95.

    CAS  Google Scholar 

  11. Sun Jun: Eng. Fract. Mech., 1991, vol. 39, pp. 799–805.

    Article  Google Scholar 

  12. J. Pan, M. Saje, and A. Needleman: Int. J. Fract., 1983, vol. 21, pp. 261–78.

    Article  Google Scholar 

  13. M.J. Worswick, N. Qiang, P. Niessen, and R.J. Pick: Shock Wave and High-Strain-Rate Phenomena in Metals, M.A. Meyers, L.E. Murr, and K.P. Standhammer, eds., Dekker, New York, NY 1990, pp. 87–95.

    Google Scholar 

  14. C.R. Mason, M.J. Worswick, and P.J Gallagher: J. Phys., 1997, vol. 7, pp. C3-827–C3-832.

    Google Scholar 

  15. I.M. Fyfe and A.M. Rajendran: J. Appl. Mech., 1982, vol. 49, p. 31.

    Article  Google Scholar 

  16. L. Seaman, D.R. Curran, J.B. Aidun, and T. Cooper: Nucl. Eng. Des., 1987, vol. 105, pp. 35–42.

    Article  Google Scholar 

  17. M.J. Worswick and R.J. Pick: Mech. Mater., 1995, vol. 19, pp. 293–309.

    Article  Google Scholar 

  18. M.M. Carroll and A.C. Holt: J. Appl. Phys., 1972, vol. 43, pp. 1626–36.

    Article  Google Scholar 

  19. J.N. Johnson: J. Appl. Phys., 1981, vol. 52, pp. 2812–25.

    Article  Google Scholar 

  20. F.L. Adessio and J. Johnson: J. Appl. Phys., 1993, vol. 74, pp. 1640–48.

    Article  Google Scholar 

  21. M.J. Worswick, H. Nahme, and J. Clarke: DYMAT J., 1994, vol. 1, pp. 229–44.

    Google Scholar 

  22. H. Nahme and M.J. Worswick: Proc. EuroDymat ’94, Oxford, United Kingdom, Sept. 26–30, 1994, pp. C8-707–C8712.

  23. S. Nemat-Nasser, J. Issacs, and J. Starret: Proc. R. Soc. A, 1991, vol. 435, p. 371.

    Article  Google Scholar 

  24. M.T. Shehata and J.D. Boyd: Inclusions and their Influence on Materials Behaviour, ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 123–31.

    Google Scholar 

  25. A.K. Pilkey, M.J. Worswick, C.I.A. Thomson, D.J. Lloyd, and G. Burger: Adv. Ind. Mater., D.S. Wilkinson, W.J. Poole, and A. Alpus, eds., The Metallurgical Society of CIM, 1998, pp. 105–21.

  26. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15.

    Google Scholar 

  27. V. Tvergaard: Int. J. Fract., 1981, vol. 17, pp. 389–407.

    Article  Google Scholar 

  28. V. Tvergaard and A. Needleman: Acta Metall., 1984, vol. 32, pp. 157–69.

    Article  Google Scholar 

  29. M.J. Worswick and P. Pelletier: Eur. J. Phys., Appl. Phys., 1998, AP4 pp. 257–67.

    Article  Google Scholar 

  30. LS-DYNA3D, Nonlinear Dynamic Analysis of Structures in Three Dimensions, Livermore Software Technology Corp., Livermore, CA, 1994.

  31. J. Harding, E.D. Wood, and J.D. Campbell: J. Mech. Eng. Sci., 1960, vol. 2, pp. 88–96.

    Google Scholar 

  32. H. Kolsky: Proc. R. Soc. A, 1949, vol. 62, pp. 676–700.

    Google Scholar 

  33. B. Hopkinson: Phil. Trans. A, 1914, vol. 213, pp. 437–56.

    CAS  Google Scholar 

  34. P.W. Bridgman: Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, NY 1952.

    Google Scholar 

  35. J.W. Hancock and A.C. Mackenzie: J. Mech. Phys. Solids, 1976, vol. 24, pp. 146–69.

    Google Scholar 

  36. A.S. Argon, J. Im, and R. Safoglu: Metall. Trans. A, 1975, vol. 6A, pp. 825–37.

    CAS  Google Scholar 

  37. A.K. Kamel, M.J. Worswick, and D. Nandall: Effect of Non-Local Damage Treatment on Dynamic Fracture Predictions, Proc. ASME PVP Congr., San Diego, CA, July 1998.

  38. M.J. Worswick, A.K. Pilkey, C.I.A. Thomson, D.J. Lloyd, and G. Burger: Microstructural Science Analysis of In-Service Failures and Advances in Microstructural Characterization, Proc. of the 31st Annual Technical Meeting of the International Metallographic Society, 26–29 July, 1998, Ottawa, Ontario, Canada, ASM International, vol. 26, pp. 507–14.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation given in the symposium entitled “Dynamic Behavior of Materials—Part II,” held during the 1998 Fall TMS/ASM Meeting and Materials Week, October 11–15, 1998, in Rosemont, Illinois, under the auspices of the TMS Mechanical Metallurgy and the ASM Flow and Fracture Committees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fowler, J.P., Worswick, M.J., Pilkey, A.K. et al. Damage leading to ductile fracture under high strain-rate conditions. Metall Mater Trans A 31, 831–844 (2000). https://doi.org/10.1007/s11661-000-0027-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-000-0027-0

Keywords

Navigation