Skip to main content
Log in

Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate whether meranzin hydrate (MH) can alleviate depression-like behavior and hypomotility similar to Chaihu Shugan Powder (CSP), and further explore the potential common mechanisms.

Methods

Totally 120 Spraque-Dawley rats were randomly divided into 5–8 groups including sham, vehicle, fluoxetine (20 mg/kg), mosapride (10 mg/kg), CSP (30 g/kg), MH (9.18 mg/kg), [D-Lys3]-GHRP-6 (Dlys, 0.5 mg/kg), and MH+Dlys groups by a random number table, 8 rats in each group. And 32 mice were randomly divided into wild-type, MH (18 mg/kg), growth hormone secretagogue receptor-knockout (GHSR-KO), and GHSR+MH groups, 8 mice in each group. The forced swimming test (FST), open field test (OFT), tail suspension test (TST), gastric emptying (GE) test, and intestinal transit (IT) test were used to assess antidepressant and prokinetic (AP) effects after drug single administration for 30 min with absorbable identification in rats and mice, respectively. The protein expression levels of brain-derived neurotrophic factor (BDNF) and phosphorylated mammalian target of rapamycin (p-mTOR) in the hippocampus of rats were evaluated by Western blot. The differences in functional brain changes were determined via 7.0 T functional magnetic resonance imaging-blood oxygen level-dependent (fMRI-BOLD).

Results

MH treatment improved depression-like behavior (FST, OFT) and hypomotility (GE, IT) in the acute forced swimming (FS) rats (all P<0.05), and the effects are similar to the parent formula CSP. The ghrelin antagonist [D-Lys3]-GHRP-6 inhibited the effect of MH on FST and GE (P<0.05). Similarly, MH treatment also alleviated depression-like behavior (FST, TST) in the wild-type mice, however, no effects were found in the GHSR KO mice. Additionally, administration of MH significantly stimulated BDNF and p-mTOR protein expressions in the hippocampus (both P<0.01), which were also prevented by [D-Lys3]-GHRP-6 (P<0.01). Besides, 3 main BOLD foci following acute FS rats implicated activity in hippocampus—thalamus—basal ganglia (HTB) circuits. The [D-Lys3]-GHRP-6 synchronously inhibited BOLD HTB foci. As expected, prokinetic mosapride only had effects on the thalamus and basal ganglia, but not on the hippocampus. Within the HTB, the hippocampus is implicated in depression and FD.

Conclusions

MH accounts for part of AP effects of parent formula CSP in acute FS rats, mainly via ghrelin-related shared regulation coupled to BOLD signals in brain areas. This novel functionally connection of HTB following acute stress, treatment, and regulation highlights anti-depression unified theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ledford H. If depression were cancer. Nature 2014;515:182–184.

    Article  CAS  PubMed  Google Scholar 

  2. Mahadeva S, Ford AC. Clinical and epidemiological differences in functional dyspepsia between the East and the West. Neurogastroenterol Motil 2016;28:167–174.

    Article  CAS  PubMed  Google Scholar 

  3. Afridi MI, Siddiqui MA, Ansari A. Gastrointestinal somatization in males and females with depressive disorder. J Pak Med Associat 2009;59:675–659.

    Google Scholar 

  4. Jamil O, Sarwar S, Hussain Z, Fiaz RO, Chaudary RD. Association between functional dyspepsia and severity of depression. J Coll Phys Surg Pak 2016;26:513–516.

    Google Scholar 

  5. Adibi P, Keshteli AH, Daghaghzadeh H, Roohafza H, Pournaghshband N, Afshar H. Association of anxiety, depression, and psychological distress in people with and without functional dyspepsia. Adv Biomed Res 2016;5:195.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Monteggia LM. Put therapies first. Nature 2014;515:200.

    Article  CAS  PubMed  Google Scholar 

  7. Chancellor D. The depression markets. Nat Rev Drug Discov 2011;10:809–810.

    Article  CAS  PubMed  Google Scholar 

  8. Glynn LG. Multimorbidity: another key issue for cardiovascular medicine. Lancet 2009;374:1421–1422.

    Article  PubMed  Google Scholar 

  9. Fujitsuka N, Asakawa A, Hayashi M, Sameshima M, Amitani H, Kojima S, et al. Selective serotonin reuptake inhibitors modify physiological gastrointestinal motor activities via 5-HT2c receptor and acyl ghrelin. Biol Psychiatry 2009;65:748–759.

    Article  CAS  PubMed  Google Scholar 

  10. Schatzberg AF. Development of new psychopharmacological agents for depression and anxiety. Psychiatr Clin North Am 2015;38:379–393.

    Article  PubMed  Google Scholar 

  11. Schatzberg AF. Issues encountered in recent attempts to develop novel antidepressant agents. Ann N Y Acad Sci 2015;1345:67–73.

    Article  CAS  PubMed  Google Scholar 

  12. Reardon S. Party drug’s power to fight depression puzzles scientists. Nature 2017;545:17.

    Article  CAS  PubMed  Google Scholar 

  13. Ingram J, Taylor H, Churchill C, Pike A, Greenwood R. Metoclopramide or domperidone for increasing maternal breast milk output: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 2012;97:F241–F245.

    Article  PubMed  Google Scholar 

  14. Hasler G. Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry 2010;9:155–161.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Huang X, Wang Y, Xie Y, Qiu X, Ren P, et al. Ferulic acid-induced anti-depression and prokinetics similar to Chaihu-Shugan-San via polypharmacology. Brain Res Bull 2011;86:222–228.

    Article  CAS  PubMed  Google Scholar 

  16. Koloski NA, Jones M, Kalantar J, Weltman M, Zaguirre J, Talley NJ. The brain-gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 2012;61:1284–1290.

    Article  CAS  PubMed  Google Scholar 

  17. Yang N, Jiang X, Qiu X, Hu Z, Wang L, Song M. Modified Chaihu Shugan Powder for functional dyspepsia: meta-analysis for randomized controlled trial. Evid-Based Complement Alternat Med 2013;2013:791724.

    PubMed  PubMed Central  Google Scholar 

  18. Xie Y, Huang X, Hu SY, Zhang YJ, Wang Y, Qiu XJ, et al. The involvement of AMPA-ERK1/2-BDNF pathway in the mechanism of new antidepressant action of prokinetic meranzin hydrate. Amino Acids 2013;44:413–422.

    Article  CAS  PubMed  Google Scholar 

  19. Shi S, Yan H, Chen Y, Liu Y, Zhang X, Xie Y, et al. Pharmacokinetic study of precisely representative antidepressant, prokinetic, anti-inflammatory and anti-oxidative compounds from Fructus aurantii and Magnolia Bark. Chem Biol Interact 2020;315:108851.

    Article  CAS  PubMed  Google Scholar 

  20. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 2011;12:453–466.

    Article  CAS  PubMed  Google Scholar 

  21. Stevens BR, Goel R, Seungbum K, Richards EM, Holbert RC, Pepine CJ, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut 2018;67:1555–1557.

    Article  CAS  PubMed  Google Scholar 

  22. Roze C. Neurohumoral control of gastrointestinal motility. Reprod Nutr Dev 1980;20:1125–1141.

    Article  CAS  PubMed  Google Scholar 

  23. Wilhelmsen I. Brain-gut axis as an example of the bio-psychosocial model. Gut 2000;47 Suppl 4:IV5-7; discussion IV10.

  24. Drossman DA, Tack J, Ford AC, Szigethy E, Tornblom H, van Oudenhove L. Neuromodulators for functional gastrointestinal disorders (disorders of gut-brain interaction): a Rome Foundation working team report. Gastroenterology 2018;154:1140–1171.e1.

    Article  PubMed  Google Scholar 

  25. Huang W, Heffernan ME, Li Z, Zhang N, Overstreet DH, King JA. Fear induced neuronal alterations in a genetic model of depression: an fMRI study on awake animals. Neurosci Lett 2011;489:74–78.

    Article  CAS  PubMed  Google Scholar 

  26. Press J. Metapsychological and clinical issues in psychosomatics research. Int J Psychoanal 2016;97:89–113.

    Article  PubMed  Google Scholar 

  27. Perez-Cervera L, Carames JM, Fernandez-Molla LM, Moreno A, Fernandez B, Perez-Montoyo E, et al. Mapping functional connectivity in the rodent brain using electric-stimulation fMRI. Methods Mol Biol 2018;1718:117–134.

    Article  CAS  PubMed  Google Scholar 

  28. Nr S, Gf K. Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striatopallido-thalamic function. Behav Brain Sci 1987;10:197–245.

    Article  Google Scholar 

  29. Grandjean J, Azzinnari D, Seuwen A, Sigrist H, Seifritz E, Pryce CR, et al. Chronic psychosocial stress in mice leads to changes in brain functional connectivity and metabolite levels comparable to human depression. Neuroimage 2016;142:544–552.

    Article  CAS  PubMed  Google Scholar 

  30. Lohani S, Poplawsky AJ, Kim SG, Moghaddam B. Unexpected global impact of VTA dopamine neuron activation as measured by opto-fMRI. Mol Psychiatry 2017;22:585–594.

    Article  CAS  PubMed  Google Scholar 

  31. Musazzi L, Tornese P, Sala N, Popoli M. Acute or chronic? A stressful question. Trends Neurosci 2017;40:525–535.

    Article  CAS  PubMed  Google Scholar 

  32. Siero JC, Hermes D, Hoogduin H, Luijten PR, Ramsey NF, Petridou N. BOLD matches neuronal activity at the mm scale: a combined 7T fMRI and ECoG study in human sensorimotor cortex. Neuroimage 2014;101:177–184.

    Article  PubMed  Google Scholar 

  33. Mayer EA, Naliboff BD, Craig AD. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 2006;131:1925–1942.

    Article  PubMed  Google Scholar 

  34. Zhou T, Zhu H, Fan Z, Wang F, Chen Y, Liang H, et al. History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 2017;357:162–168.

    Article  CAS  PubMed  Google Scholar 

  35. Hampton T. Organoids reveal clues to gut-brain communication. JAMA 2017;318:787–788.

    Article  PubMed  Google Scholar 

  36. Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab 2015;4:437–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie Y, Huang X, Hu SY, Qiu XJ, Zhang YJ, Ren P, et al. Meranzin hydrate exhibits anti-depressive and prokinetic-like effects through regulation of the shared alpha2-adrenoceptor in the brain-gut axis of rats in the forced swimming test. Neuropharmacology 2013;67:318–325.

    Article  CAS  PubMed  Google Scholar 

  38. Bogdanova OV, Kanekar S, D’Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav 2013;118:227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Powell TR, Fernandes C, Schalkwyk LC. Depression-related behavioral tests. Curr Protoc Mouse Biol 2012;2:119–127.

    Article  PubMed  Google Scholar 

  40. De Winter BY, Bredenoord AJ, De Man JG, Moreels TG, Herman AG, Pelckmans PA. Effect of inhibition of inducible nitric oxide synthase and guanylyl cyclase on endotoxin-induced delay in gastric emptying and intestinal transit in mice. Shock 2002;18:125–131.

    Article  PubMed  Google Scholar 

  41. De Winter BY, De Man JG, Seerden TC, Depoortere I, Herman AG, Peeters TL, et al. Effect of ghrelin and growth hormone-releasing peptide 6 on septic ileus in mice. Neurogastroenterol Motil 2004;16:439–446.

    Article  CAS  PubMed  Google Scholar 

  42. Nie B, Hui J, Wang L, Chai P, Gao J, Liu S, et al. Automatic method for tracing regions of interest in rat brain magnetic resonance imaging studies. J Magn Reson Imag 2010;32:830–835.

    Article  Google Scholar 

  43. Nie B, Chen K, Zhao S, Liu J, Gu X, Yao Q, et al. A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis. Hum Brain Map 2013;34:1306–1318.

    Article  Google Scholar 

  44. Nie B, Liu H, Chen K, Jiang X, Shan B. A statistical parametric mapping toolbox used for voxel-wise analysis of FDG-PET images of rat brain. PLoS One 2014;9:e108295.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen M, Men L, Ou L, Li T, Li M, Zhong X, et al. Effectiveness and safety of modified ‘Huoxue Shugan’ formulas on coronary heart disease combined with depression: protocol for a systematic review. BMJ Open 2018;8:e022868.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Y, Fan R, Huang X. Meta-analysis of the clinical effectiveness of traditional Chinese medicine formula Chaihu-Shugan-San in depression. J Ethnopharmacol 2012;141: 571–577.

    Article  PubMed  Google Scholar 

  47. Tomita T, Oshima T, Miwa H. New approaches to diagnosis and treatment of functional dyspepsia. Curr Gastroenterol Rep 2018;20:55.

    Article  PubMed  Google Scholar 

  48. Kim SY, Choi CB, Lee HS, Lee SH, Woo DC, Kim HY, et al. Reversal of myo-inositol metabolic level in the left dorsolateral prefrontal cortex of rats exposed to forced swimming test following desipramine treatment: an in vivo localized (1)H-MRS study at 4.7 T. Magn Reson Imag 2010;28:1461–1467.

    Article  CAS  Google Scholar 

  49. Gao L, Huang P, Dong Z, Gao T, Huang S, Zhou C, et al. Modified Xiaoyaosan (MXYS) exerts anti-depressive effects by rectifying the brain blood oxygen level-dependent fMRI signals and improving hippocampal neurogenesis in mice. Front Pharmacol 2018;9:1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hubbard CS, Karpowicz JM, Furman AJ, Da SJ, Seminowicz DA, Traub RJ. Estrogen-dependent visceral hypersensitivity following stress in rats: an fMRI study. Mol Pain 2016;12:12/0/1744806916654145.

    Article  Google Scholar 

  51. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999;402:656–660.

    Article  CAS  PubMed  Google Scholar 

  52. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat Neurosci 2008;11:752–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioral antidepressant responses. Nature 2011;475:91–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:140–144.

    Article  CAS  PubMed  Google Scholar 

  55. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019;184:646–657.

    Article  PubMed  Google Scholar 

  57. Harmer J, Sanchez-Panchuelo RM, Bowtell R, Francis ST. Spatial location and strength of BOLD activation in high-spatial-resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T. NMR Biomed 2012;25:717–725.

    Article  CAS  PubMed  Google Scholar 

  58. Hirvonen J, Hietala J, Kajander J, Markkula J, Rasi-Hakala H, Salminen JK, et al. Effects of antidepressant drug treatment and psychotherapy on striatal and thalamic dopamine D2/3 receptors in major depressive disorder studied with [11C] raclopride PET. J Psychopharmacol 2011;25:1329–1336.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Y, Liu F, Xiao H, Yao X, Li G, Choi SR, et al. Fluorine-18 labeled diphenyl sulfide derivatives for imaging serotonin transporter (SERT) in the brain. Nucl Med Biol 2018;66:1–9.

    Article  PubMed  Google Scholar 

  60. Liu P, Zeng F, Yang F, Wang J, Liu X, Wang Q, et al. Altered structural covariance of the striatum in functional dyspepsia patients. Neurogastroenterol Motil 2014;26:1144–1154.

    Article  CAS  PubMed  Google Scholar 

  61. Lee IS, Wang H, Chae Y, Preissl H, Enck P. Functional neuroimaging studies in functional dyspepsia patients: a systematic review. Neurogastroenterol Motil 2016;28:793–805.

    Article  PubMed  Google Scholar 

  62. Jones RB, Mckie S, Astbury N, Little TJ, Tivey S, Lassman DJ, et al. Functional neuroimaging demonstrates that ghrelin inhibits the central nervous system response to ingested lipid. Gut 2012;61:1543–1551.

    Article  CAS  PubMed  Google Scholar 

  63. Li J, An R, Zhang Y, Li X, Wang S. Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am J Clin Nutr 2012;96:275–282.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Huang X and Ren P designed the experiments, acquired funding, and supervised the project; Liu YL, Xu JJ, Han LR, and Liu XF performed the experiments; Xu JJ, Lin MH, Wang Y, Xiao Z, and Huang YK analyzed the data; Huang X and Xu JJ wrote and revised the manuscript.

Corresponding author

Correspondence to Xi Huang.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interests to disclose.

Supported by National Natural Science Foundation of China (No. 81573797, 81973589, and 81072967), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Integration of Chinese and Western Medicine)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yl., Xu, Jj., Han, Lr. et al. Meranzin Hydrate Improves Depression-Like Behaviors and Hypomotility via Ghrelin and Neurocircuitry. Chin. J. Integr. Med. 29, 490–499 (2023). https://doi.org/10.1007/s11655-022-3308-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3308-2

Keywords

Navigation