Skip to main content

Advertisement

Log in

Resveratrol Modulates Bone Mineral Density and Bone Mineral Content in A Rat Model of Male Hypogonadism

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To determine whether resveratrol (Res) can correct osteoporosis induced in a rat model of male hypogonadism.

Methods

Thirty-two rats were randomly divided into 4 groups, 8 in each group; 1) a control sham group: underwent a similar surgical procedure for induction of orchiectomy (ORCD) without ligation of any arteries or veins or removal of the testis and epididymis; 2) a control + Res-treated group (Con+Res): underwent sham surgery similar to the control, but was then treated with Res, as described below; 3) an ORCD-induced group: bilateral ORCD surgery as described above, and 4) a ORCD+Res-treated group: bilateral ORCD surgery followed by Res treatment. Res treatment began 4 weeks after ORCD and continued for 12 weeks. After 12 weeks, bone mineral density (BMD) and bone mineral content (BMC) were measured in the tibia and femur of each rat’s right hind leg. Blood levels of bone turnover indicators such as deoxypyridinoline (Dpd), N-telopeptide of type I collagen (NTX I), alkaline phosphatase (ALP), and osteocalcin (OC), as well as receptor activator of nuclear factor kappa B (RANK) and osteoprotegerin (OPG) were assessed.

Results

ORCD significantly decreased BMD (P<0.01) and significantly increased bone resorption, manifested by increased RANK. In addition, it inhibited serum levels of OPG and OC. Res treatment after ORCD effectively increased serum levels of bone formation markers such as OPG and OC, compared with testisectomized rats (P<0.05).

Conclusion

Res could ameliorate bone loss induced by male hypogonadism, possible via restoration of the normal balance between RANK and OPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerner UH. Bone remodeling in post-menopausal osteoporosis. J Dent Res 2006;85:584–595.

    Article  CAS  Google Scholar 

  2. Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Ann Rev Biomed Eng 2006;8:455–498.

    Article  CAS  Google Scholar 

  3. Riggs BL, Khosla S, Melton LJ,3rd. A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 1998;13:763–773.

    Article  CAS  Google Scholar 

  4. Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, et al. Risk factors for increased bone loss in an elderly population: the Rotterdam Study. Am J Epidemiol 1998;147:871–879.

    Article  CAS  Google Scholar 

  5. Kenny AM, Prestwood KM, Marcello KM, Raisz LG. Determinants of bone density in healthy older men with low testosterone levels. J Gerontol A Biol Sci Med Sci 2000;55:492–497.

    Article  Google Scholar 

  6. Scopacasa F, Horowitz M, Wishart JM, Morris HA, Chatterton BE, Need AG. The relation between bone density, free androgen index, and estradiol in men 60 to 70 years old. Bone 2000;27:145–149.

    Article  CAS  Google Scholar 

  7. Stanley HL, Schmitt BP, Poses RM, Deiss WP. Does hypogonadism contribute to the occurrence of a minimal trauma hip fracture in elderly men? J Am Geriatr Soc 1991;39:766–771.

    Article  CAS  Google Scholar 

  8. Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev 2004;15:49–60.

    Article  Google Scholar 

  9. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89:309–139.

    Article  CAS  Google Scholar 

  10. Halleen JM, Ylipahkala H, Alatalo SL, Janckila AJ, Heikkinen JE, Suominen H, et al. Serum tartrate-resistant acid phosphatase 5b, but not 5a, correlates with other markers of bone turnover and bone mineral density. Calcif Tissue Int 2002;71:20–25.

    Article  CAS  Google Scholar 

  11. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005;26:97–122.

    Google Scholar 

  12. Christgau S, Bitsch-Jensen O, Hanover Bjarnason N, Gamwell Henriksen E, Qvist P, Alexandersen P, et al. Serum CrossLaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone 2000;26:505–511.

    Article  CAS  Google Scholar 

  13. Francis RM. The effects of testosterone on osteoporosis in men. Clin Endocrinol 1999;50:411–414.

    Article  CAS  Google Scholar 

  14. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007;130:456–469.

    Article  CAS  Google Scholar 

  15. Oury J, Oury F. Osteocalcin, a key molecule for bone endocrine functions. Med Sci 2018;34:54–62.

    Google Scholar 

  16. Lumachi F, Ermani M, Camozzi V, Tombolan V, Luisetto G. Changes of bone formation markers osteocalcin and bone-specific alkaline phosphatase in postmenopausal women with osteoporosis. Ann N Y Acad Sci 2009;1:E60–E63.

    Article  Google Scholar 

  17. Qaseem A, Forciea MA, McLean RM, Denberg TD. Treatment of low bone density or osteoporosis to prevent fractures in men and women: A clinical practice guideline update from the American College of Physicians. Ann Intern Med 2017;166:818–839.

    Article  Google Scholar 

  18. Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, et al. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 2007;14:806–814.

    Article  CAS  Google Scholar 

  19. Baolin L, Inami Y, Tanaka H, Inagaki N, Iinuma M, Nagai H. Resveratrol inhibits the release of mediators from bone marrow-derived mouse mast cells in vitro. Planta Med 2004;70:305–309.

    Article  Google Scholar 

  20. Knutson MD, Leeuwenburgh C. Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases. Nutr Rev 2008;66:591–596.

    Article  Google Scholar 

  21. Novakovic R, Ilic B, Beleslin-Cokic B, Radunovic N, Heinle H, Scepanovic R, et al. The effect of resveratrol on contractility of non-pregnant rat uterus: the contribution of K(+) channels. J Physiol Pharmacol 2013;64:795–805.

    CAS  Google Scholar 

  22. Lee AM, Shandala T, Nguyen L, Muhlhausler BS, Chen KM, Howe PR, et al. Effects of resveratrol supplementation on bone growth in young rats and microarchitecture and remodeling in ageing rats. Nutrients 2014;6:5871–5887.

    Article  CAS  Google Scholar 

  23. Boissy P, Andersen TL, Abdallah BM, Kassem M, Plesner T, Delaisse JM. Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 2005;65:9943–9952.

    Article  CAS  Google Scholar 

  24. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–776.

    Article  CAS  Google Scholar 

  25. Eleawa SM, Sakr HF, Hussein AM, Assiri AS, Bayoumy NM, Alkhateeb M. Effect of testosterone replacement therapy on cardiac performance and oxidative stress in orchidectomized rats. Acta Physiol 2013;209:136–147.

    Article  CAS  Google Scholar 

  26. Johnston CB, Dagar M. Osteoporosis in older adults. Med Clin North Am 2020;104:873–884.

    Article  Google Scholar 

  27. Dupree K, Dobs A. Osteopenia and male hypogonadism: Rev Urol 2004;6 Suppl 6:30–34.

    Google Scholar 

  28. Golds G, Houdek D, Arnason T. Male hypogonadism and osteoporosis: The effects, clinical consequences, and treatment of testosterone deficiency in bone health. Int J Endocrinol 2017;4602129:16.

    Google Scholar 

  29. Taxel P, Kennedy DG, Fall PM, Willard AK, Clive JM, Raisz LG. The effect of aromatase inhibition on sex steroids, gonadotropins, and markers of bone turnover in older men. J Clin Endocrinol Metab 2001;86:2869–2874.

    CAS  Google Scholar 

  30. Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 2012;23:576–581.

    Article  CAS  Google Scholar 

  31. Orwoll ES, Klein RF. Osteoporosis in men. Endocr Rev 1995;16:87–116.

    Article  CAS  Google Scholar 

  32. Bilezikian JP. Osteoporosis in men. J Clin Endocrinol Metab 1999;84:3431–3434.

    CAS  Google Scholar 

  33. Titorencu I, Pruna V, Jinga VV, Simionescu M. Osteoblast ontogeny and implications for bone pathology: an overview. Cell Tissue Res 2014;355:23–33.

    Article  CAS  Google Scholar 

  34. Neve A, Corrado A, Cantatore FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 2011;343:289–302.

    Article  CAS  Google Scholar 

  35. Yin Y, Ding L, Hou Y, Jiang H, Zhang J, Dai Z, et al. Upregulating microRNA-410 or downregulating Wnt-11 increases osteoblasts and reduces osteoclasts to alleviate osteonecrosis of the femoral head. Nanoscale Res Lett 2019;14:383.

    Article  CAS  Google Scholar 

  36. Pepene CE, Crişan N, Coman I. Elevated serum receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in late-onset male hypogonadism. Clin Invest Med 2011;34:15365.

    Article  Google Scholar 

  37. Morgans AK, Smith MR. RANKL-targeted therapies: the next frontier in the treatment of male osteoporosis. J Osteoporos 2011;941310:15.

    Google Scholar 

  38. Osterberg EC, Bernie AM, Ramasamy R. Risks of testosterone replacement therapy in men. Indian J Urol 2014;30:2–7.

    Article  Google Scholar 

  39. Feng YL, Jiang XT, Ma FF, Han J, Tang XL. Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity. Int J Mol Med 2018;41:202–212.

    CAS  Google Scholar 

  40. Kondo H, Limoli C, Searby ND, Almeida EA, Loftus DJ, Vercoutere W, et al. Shared oxidative pathways in response to gravity-dependent loading and gamma-irradiation of bone marrow-derived skeletal cell progenitors. Radiats Biol Radioecol 2007;47:281–285.

    CAS  Google Scholar 

  41. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 2008;129:163–173.

    Article  CAS  Google Scholar 

  42. Feng YF, Wang L, Zhang Y, Li X, Ma ZS, Zou JW, et al. Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. Biomaterials 2013;34:2234–2243.

    Article  CAS  Google Scholar 

  43. Wu X, Li J, Zhang H, Wang H, Yin G, Miao D. Pyrroloquinoline quinone prevents testosterone deficiency-induced osteoporosis by stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Am J Transl Res 2017;9:1230–1242.

    CAS  Google Scholar 

  44. Drake MT, Khosla S. Male osteoporosis. Endocrinol Metab Clin North Am 2012;41:629–641.

    Article  Google Scholar 

  45. Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 2017;174:1633–1646.

    Article  CAS  Google Scholar 

  46. Silva P, Sureda A, Tur JA, Andreoletti P, Cherkaoui-Malki M, Latruffe N. How efficient is resveratrol as an antioxidant of the Mediterranean diet, towards alterations during the aging process? Free Radic Res. 2019;53:1101–1112.

    Article  CAS  Google Scholar 

  47. Zhou T, Yan Y, Zhao C, Xu Y, Wang Q, Xu N. Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation. Redox Rep 2019;24:62–69.

    Article  CAS  Google Scholar 

  48. Durbin SM, Jackson JR, Ryan MJ, Gigliotti JC, Alway SE, Tou JC. Resveratrol supplementation influences bone properties in the tibia of hindlimb-suspended mature Fisher 344 × Brown Norway male rats. Appl Physiol Nutr Metab 2012;37:1179–1188.

    Article  CAS  Google Scholar 

  49. Gehm BD, McAndrews JM, Chien PY, Jameson JL. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci U S A 1997;94:14138–14143.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, methodology, writing and editing, resources, supervision, and visualization: Hussein F. Sakr; investigation, methodology, and writing: Boudaka Ammar; investigation, methodology, and conceptualization: Amira Alkharusi; investigation and methodology: I. Al-Lawati; writing and revision: M. Alkhateeb; writing and editing, and resources: Basem H. Elesawy.

Corresponding author

Correspondence to Hussein F. Sakr.

Additional information

Conflict of Interest

The authors declared no conflict of interest.

Supported by Sultan Qaboos University, Internal Grant/Medicine/Physiology/18/02

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakr, H.F., Ammar, B., AlKharusi, A. et al. Resveratrol Modulates Bone Mineral Density and Bone Mineral Content in A Rat Model of Male Hypogonadism. Chin. J. Integr. Med. 29, 146–154 (2023). https://doi.org/10.1007/s11655-022-2895-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-2895-2

Keywords

Navigation