Skip to main content
Log in

Hypophysenadenome

Pituitary adenomas

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Aufgrund der Seltenheit klinisch relevanter Hypophysenadenome erfolgt die Diagnosestellung trotz charakteristischer Symptome oft erst im fortgeschrittenen Stadium. Die typischen klinischen Erscheinungsformen werden in dieser Übersichtsarbeit dargestellt. In jüngster Vergangenheit gelang mit dem Nachweis der USP8-Mutation bei Morbus Cushing und des X‑linked-acrogigantism(X-LAG)-Syndroms ein Durchbruch bei der Erforschung molekularer Ursachen von Hypophysenadenomen. Die Trias endokrinologische, radiologische und ophthalmologische Abklärung steht im Mittelpunkt der Diagnostik. Operation, medikamentöse Therapie und Bestrahlung stellen die klassischen Säulen der Therapie dar. Für die transsphenoidale Operation von Hypophysenadenomen stehen mit der Mikrochirurgie und der Endoskopie zwei gleichwertige, komplikationsarme Verfahren zur Verfügung. Die Operation stellt die Erstlinientherapie von Hypophysenadenomen dar. Eine Sonderstellung haben Prolaktinome, für die eine effiziente medikamentöse Therapie mit Dopaminagonisten zur Verfügung steht. Auch für die Akromegalie und für den Morbus Cushing stehen neue medikamentöse Therapieoptionen zur Verfügung, die in der Zweitlinientherapie zum Einsatz kommen. Für die seltenen aggressiv wachsenden Hypophysenadenome wird das alkylierende Chemotherapeutikum Temozolomid zur Erstlinienchemotherapie eingesetzt. Die Bestrahlung ist bei unzureichendem Erfolg der operativen und medikamentösen Behandlung indiziert. Die stereotaktische Einzeitbestrahlung (Radiochirurgie) ist besonders geeignet für umschriebene, invasive Rest- oder Rezidivadenome im Sinus cavernosus. Eine neue Entwicklung der Radiochirurgie ist die Hypofraktionierung zur Schonung von Risikostrukturen. Die fraktionierte Bestrahlung ist erforderlich bei großem Bestrahlungsvolumen und bei Adenomen in unmittelbarer Nähe zur Sehbahn.

Abstract

Despite characteristic symptoms the diagnosis of clinically relevant pituitary adenomas is often delayed until an advanced stage due to the rarity of the disease. The typical clinical manifestations are presented in this review article. The recent discovery of the USP8 mutation in Cushing’s disease and of X‑linked acrogigantism (X-LAG) syndrome in early onset gigantism were milestones in the search for the molecular etiology of pituitary adenomas. The triad of endocrinological, radiological and ophthalmological diagnostics are the main pillars for the diagnostic work-up of pituitary adenomas. The standard treatment modalities, which include surgery, medical treatment and irradiation, have been further developed and refined. For transsphenoidal excision of pituitary adenomas, microsurgery and endoscopy are two equivalent surgical techniques with relatively few complications. Surgery represents the first-line treatment of pituitary adenomas. Prolactinomas are an exception as the medical treatment with dopamine agonists is highly efficient. Nowadays, new medical treatment options are available for acromegaly and Cushing’s disease and are used for second-line treatment. The alkylating chemotherapeutic agent temozolomide is used for the first-line chemotherapy of rare aggressively growing pituitary adenomas. Irradiation is indicated if surgical and medical treatment options are insufficiently successful. Stereotactic one-stage irradiation (radiosurgery) is especially suitable for well-demarcated invasive residual or recurrent adenomas in the cavernous sinus. A new development is hypofractionated radiosurgery for protection of structures at risk. Fractionated irradiation is necessary with large radiation volumes and for pituitary adenomas with a close proximity to the optic tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ammirati M, Wei L, Ciric I (2013) Short-term outcome of endoscopic versus microscopic pituitary adenoma surgery: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 84:843–849

    Article  Google Scholar 

  2. Biller BMK, Grossman AB, Stewart PM et al (2008) Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 93:2454–2462

    Article  CAS  Google Scholar 

  3. Buchfelder M, Kreutzer J (2008) Transcranial surgery for pituitary adenomas. Pituitary 84:843–849

    Google Scholar 

  4. Colao A, Bronstein MD, Freda P et al (2014) Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab 99:791–799

    Article  CAS  Google Scholar 

  5. Daly AF, Rixhon M, Adam C et al (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liège, Belgium. J Clin Endocrinol Metab 91:4769–4775

    Article  CAS  Google Scholar 

  6. Dekkers OM, Lagro J, Burman P et al (2010) Recurrence of hyperprolactinemia after withdrawal of dopamine agonists: systematic review and meta-analysis. J Clin Endocrinol Metab 95:43–51

    Article  CAS  Google Scholar 

  7. Ezzat S, Asa SL, Couldwell WT et al (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619

    Article  Google Scholar 

  8. Hardy J (1969) Transsphenoidal microsurgery of the normal and pathological pituitary. Clin Neurosurg 16:185–217

    Article  CAS  Google Scholar 

  9. Honegger J, Ernemann U, Psaras T et al (2007) Objective criteria for successful transsphenoidal removal of suprasellar nonfunctioning pituitary adenomas. A prospective study. Acta Neurochir (wien) 149:21–29

    Article  CAS  Google Scholar 

  10. Honegger J, Grimm F (2018) The experience with transsphenoidal surgery and its importance to outcomes. Pituitary 21:545–555

    Article  Google Scholar 

  11. Jenkins PJ, Bates P, Carson N et al (2006) Conventional pituitary irradiation is effective in lowering serum growth hormone and insulin-like growth factor-I in patients with acromegaly. J Clin Endocrinol Metab 91:1239–1245

    Article  CAS  Google Scholar 

  12. Jho HD, Carrau RL (1997) Endoscopic endonasal transsphenoidal surgery: experience with 50 patients. J Neurosurg 87:44–51

    Article  CAS  Google Scholar 

  13. Katznelson L, Laws E, Melmed S et al (2014) Acromegaly: an Endocrine Society clincal practice guideline. J Clin Endocrinol Metab 99:3933–3951

    Article  CAS  Google Scholar 

  14. Knosp E, Steiner E, Kitz K et al (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617

    CAS  PubMed  Google Scholar 

  15. Leonart LP, Tonin FS, Ferreira VL et al (2019) Effectiveness and safety of pegvisomant: a systematic review and meta-analysis of observational longitudinal studies. Endocrine 63:18–26

    Article  CAS  Google Scholar 

  16. Lloyd RV, Osamura RY, Klöppel G, Rosai J (2017) WHO classification of tumours of endocrine organs. International Agency for Research and Cancer, Lyon

    Google Scholar 

  17. Marek J, Jezková J, Hána V (2015) Gamma knife radiosurgery for Cushing’s disease and Nelson’s syndrome. Pituitary 18:376–384

    Article  Google Scholar 

  18. McCormack A, Dekkers OM, Petersenn S et al (2018) Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol 178:265–276

    Article  CAS  Google Scholar 

  19. O’Sullivan EP, Woods C, Glynn N et al (2009) The natural history of surgically treated but radiotherapy-naive nonfunctioning pituitary adenomas. Clin Endocrinol (oxf) 71:709–771

    Article  Google Scholar 

  20. Patel KS, Yao Y, Wang R et al (2016) Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery. Pituitary 19:222–231

    Article  Google Scholar 

  21. Pecori Giraldi F, Cavallo LM, Tortora F et al (2015) The role of inferior petrosal sinus sampling in ACTH-dependent Cushing’s disease: review and joint opinion statement by members of the Italian Society for Endocrinology, Italian Society for Neurosurgery, and Italian Society for Neuroradiology. Neurosurg Focus 38(2):E5

    Article  Google Scholar 

  22. Pollock BE, Brown PD, Nippoldt TB et al (2008) Pituitary tumor type affects the chance of biochemical remission after radiosurgery of hormone-secreting pituitary adenomas. Neurosurgery 62:1271–1278

    Article  Google Scholar 

  23. Psaras T, Milian M, Hattermann V et al (2011) Executive functions recover earlier than episodic memory after microsurgical transsphenoidal resection of pituitary tumors in adult patients—a longitudinal study. J Clin Neurosci 18:1340–1345

    Article  CAS  Google Scholar 

  24. Raverot G, Burman P, McCormack A et al (2018) European Society of Endocrinology clinical practice guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol 178:G1–G24

    Article  CAS  Google Scholar 

  25. Reincke M, Sbiera S, Hayakawa A et al (2014) Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet 47:31–38

    Article  Google Scholar 

  26. Schmalisch K, Milian M, Schimitzek T et al (2012) Predictors for visual dysfunction in nonfunctioning pituitary adenomas—implications for neurosurgical management. Clin Endocrinol (oxf) 77:728–734

    Article  Google Scholar 

  27. Schöfl C, Franz H, Grussendorf M et al (2013) Long-term outcome in patients with acromegaly: analysis of 1344 patients from the German Acromegaly Register. Eur J Endocrinol 168:39–47

    Article  Google Scholar 

  28. Sheehan JP, Xu Z, Lobo MJ (2012) External beam radiation therapy and stereotactic radiosurgery for pituitary adenomas. Neurosurg Clin N Am 23:571–586

    Article  Google Scholar 

  29. Tampourlou M, Trifanescu R, Paluzzi A et al (2016) Surgery in microprolactinomas: effectiveness and risks based on contemporary literature. Eur J Endocrinol 175:R89–R96

    Article  CAS  Google Scholar 

  30. Valassi E, Klibanski A, Biller BMK (2010) Potential cardiac valve effects of dopamine agonists in hyperprolactinemia. J Clin Endocrinol Metab 95:1025–1033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Honegger.

Ethics declarations

Interessenkonflikt

J. Honegger erhielt Honorare für Vorträge von Novartis, Ipsen und Pfizer. Er nahm an Advisory-Board-Treffen der Firma Novartis teil. I. Nasi-Kordhishti und S. Giese geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honegger, J., Nasi-Kordhishti, I. & Giese, S. Hypophysenadenome. best practice onkologie 14, 480–492 (2019). https://doi.org/10.1007/s11654-019-00178-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-019-00178-3

Schlüsselwörter

Keywords

Navigation