Skip to main content
Log in

Klonale Hämatopoese – Teil 2

Pathogenese und klinische Konsequenzen

Clonal hematopoiesis—part 2

Pathogenesis and clinical consequences

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Klonale Hämatopoese ist definiert als das Auftreten von Mutationen in Leukozyten des peripheren Blutes bei nicht hämatologisch Erkrankten. Häufig sind von diesen Sequenzveränderungen wichtige Treibergene für hämatologische Neoplasien betroffen. In diesem Zusammenhang wurden die Begriffe CHIP (klonale Hämatopoese unbestimmten Potenzials) und, aufgrund der dann nachgewiesen Altersabhängigkeit, ARCH (altersassoziierte klonale Hämatopoese) geprägt. Laut jüngeren Studiendaten entsteht CHIP jedoch bereits in der ersten Lebensjahrzehnten, und die entsprechenden Klone bleiben über Jahrzehnte stabil oder expandieren langsam, sodass nahezu jedes Individuum betroffen sein könnte. Der Nachweis von CHIP-Mutationen ist mit einem erhöhten Risiko für kardiovaskuläre Erkrankungen und hämatologische Neoplasien assoziiert. Der Begriff CCUS (klonale Zytopenie unklarer Signifikanz), einer Vorstufe von MDS (myelodysplastisches Syndrom), bezeichnet Situationen, in denen bei unklarer Zytopenie ohne signifikante Dysplasien klonale Mutationen nachweisbar sind. Die Evolution von CHIP bis zum MDS oder der sekundären AML (akute myeloische Leukämie) ist von einer Klongrößenzunahme, der Akquisition weiterer Mutationen und dem Einfluss wichtiger Kofaktoren geprägt. Das Risiko des Übergangs einer Zytopenie in eine hämatologische Systemerkrankung hängt von der Art und Anzahl der Mutationen ab. Der Nachweis von CHIP ist prädiktiv für das Entstehen eines MDS und einer AML und mit dem Risiko für und der Prognose von therapieassoziierten myeloischen Neoplasien assoziiert. Auch für aplastische Anämien, CLL (chronische lymphatische Leukämie), maligne Lymphome und solide Tumoren ist CHIP relevant. Beim Nachweis von CHIP gibt es, abhängig von Begleitbefunden, differenzierte Vorschläge zum klinischen Management der Betroffenen.

Abstract

Clonal hematopoiesis is defined as the occurrence of mutations in leukocytes in the peripheral blood of non-hematological patients. These sequence changes often affect important driver genes for hematological neoplasms. In this context, the terms CHIP (clonal hematopoiesis of indeterminate potential) and, due to the dependence on age, ARCH (age-related clonal hematopoiesis) were introduced. However, recent study data indicate that CHIP develops already in the first decades of life, and the corresponding clones remain stable or expand slowly over decades, so that almost every individual might be affected. The detection of CHIP mutations is associated with an increased risk of cardiovascular disease and hematological neoplasms. The term clonal cytopenia of unclear significance (CCUS), a precursor of myelodysplastic syndrome (MDS), describes situations in which clonal mutations can be detected in unclear cytopenia without significant dysplasia. Progression of CHIP to MDS or secondary acute myeloid leukemia (AML) is characterized by an increase in clonal size, the acquisition of further mutations and the influence of important cofactors. The risk of a transition from cytopenia to a hematological systemic disease depends on the type and number of mutations. The detection of CHIP is predictive for the development of MDS and AML and is associated with the risk for and prognosis of therapy-associated myeloid neoplasms. CHIP is also predictive for aplastic anemia, chronic lymphocytic leukemia (CLL), malignant lymphomas, and solid tumors. In the detection of CHIP there are, depending on accompanying findings, differentiated suggestions for the clinical management of those affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb.3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Abbreviations

AA:

Aplastische Anämie

AML:

Akute myeloische Leukämie

ARCH:

„Age-related clonal hematopoiesis“, altersassoziierte klonale Hämatopoese

ASXL1 :

Gen für den ASXL-Transkriptionsregulator 1 (ASXL: „additional sex combs-like“)

Auto-SZT:

Autologe Stammzelltransplantation

AVK:

Arterielle Verschlusskrankheit

BCOR :

Gen für den BCL6-Korepressor (BCL: „B cell lymphoma“)

BCORL1 :

Gen für das BCL6-Korepressor-ähnliche Protein 1

CALR :

Calretikulingen

CBFB :

Gen der „core-binding factor subunit beta“

CBL :

Gen des CBL-Protoonkogens (CBL: „Casitas B‑lineage lymphoma“)

CCUS:

Klonale Zytopenie unklarer Signifikanz

CDKN2C :

Gen für den zyklinabhängigen Kinaseinhibitor 2C

CEBPA :

Gen für „CCAAT enhancer binding protein alpha“ (CCAAT: Cytosin-Cytosin-Adenosin-Adenosin-Thymidin)

CHIP:

Klonale Hämatopoese unbestimmten Potenzials

CLL:

Chronische lymphatische Leukämie

CML :

Chronische myeloische Leukämie

CMML:

Chronische myelomonozytäre Leukämie

CNV-LOH:

Kopienzahlneutraler Verlust der Heterozygotie („copy number neutral loss of heterozygosity“)

CUX1 :

Gen für „cut like homeobox 1“

DNA:

Desoxyribonukleinsäure

DNMT3A :

Gen für die DNA-Methyltransferase 3α

EP300 :

Gen für das E1A-Bindeprotein p300

ETV6 :

Gen für „ETS variant transcription factor 6“ (ETS: „E26 transformation-specific“)

EZH2 :

Gen für „enhancer of zeste 2 polycomb repressive complex 2 subunit“

FISH:

Fluoreszenz-in-situ-Hybridisierung

FLT3 :

Gen für „fms related tyrosine kinase 3“

G3BP1 :

Gen für das „Ras GTPase-activating protein-binding protein 1“

GATA2 :

Gen für „GATA binding protein 2“ (GATA: „globin transcription factor 1“)

GTP:

Guanosintriphosphat

HLA:

Menschliches Leukozytenantigen

HNF1A :

Gen für die HNF-1-Homöobox A (HNF: „hepatocyte nuclear factor“)

hSPZ:

Hämatopoetische Stamm- und Progenitorzellen

IDH1 :

Gen der Isozitratdehydrogenase 1

IDH2 :

Gen der Isozitratdehydrogenase 2

IL:

Interleukin

JAK2 :

Gen für die Januskinase 2

kH:

Klonale Hämatopoese

KHK:

Koronare Herzkrankheit

kvE:

Kardiovaskuläre Erkrankung

LDL:

„Low density lipoprotein“

MBL:

Monoklonale B‑Zell-Lymphozytose

MDS:

Myelodysplastisches Syndrom

MYD88 :

Gen für „myeloid differentiation primary response 88 innate immune signal transduction adaptor“

MYH11 :

Gen der „myosin heavy chain 11“

NGS:

„Next generation sequencing“

NLP3:

Neuropeptidähnliches Protein 3

NOTCH1 :

Gen für den Notch-Rezeptor 1

PHF6 :

Gen für „plant homeodomain finger protein 6“

PIGA :

Gen für „phosphatidylinositol glycan anchor biosynthesis class A“

POT1 :

Gen für „protection of telomeres 1“

RNA:

Ribonukleinsäure

RIT1 :

Gen für „Ras like without CAAX 1“ (CAAX: C: Cystein, A aliphatische Aminosäure, X Prenylationstyp)

RUNX1 :

Gen für „Runt related transcription factor 1“

RUNX1T1 :

Gen des „RUNX1 partner transcriptional co-repressor 1“

SF3B1 :

Gen der Spleißfaktor-3b-Untereinheit 1

SMC3 :

Gen für „structural maintenance of chromosomes 3“

SNP:

„Short-nucleotide-polymorphism“

SRSF2 :

Gen für den „serine and arginine rich splicing factor 2“

T-:

T‑Zell-

TET2 :

Gen für „ten-eleven translocation 2“

TP53 :

Gen für das Tumorsuppressorprotein 53

U2AF1 :

Gen für „U2 small nuclear RNA auxiliary factor 1“

UPD:

Uniparentale Disomie

VAF:

Variante Allelfrequenz

ZRSR2 :

Gen für „zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2“ (CCCH: „common control channel“)

Literatur

  1. Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559(7714):400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agathangelidis A, Ljungström V, Scarfò L et al (2018) Highly similar genomic landscapes in monoclonal B‑cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica 103(5):865–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bowman RL, Busque L, Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22(2):157–170. https://doi.org/10.1016/j.stem.2018.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Braulke F, Jung K, Schanz J et al (2013) Molecular cytogenetic monitoring from CD34+ peripheral blood cells in myelodysplastic syndromes: First results from a prospective multicenter German diagnostic study. Leuk Res 37(8):900–906

    Article  PubMed  Google Scholar 

  5. Brunner AM, Blonquist TM, Hobbs GS et al (2017) Risk and timing of cardiovascular death among patients with myelodysplastic syndromes. Blood Adv 1(23):2032–2040

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buckstein R, Jang K, Friedlich J et al (2009) Estimating the prevalence of myelodysplastic syndromes in patients with unexplained cytopenias: a retrospective study of 322 bone marrows. Leuk Res 33(10):1313–1318

    Article  PubMed  Google Scholar 

  7. Chitre S, Stölzel F, Cuthill K et al (2018) Clonal hematopoiesis in patients with multiple myeloma undergoing autologous stem cell transplantation. Leukemia 32(9):2020–2024

    Article  PubMed  Google Scholar 

  8. Condoluci A, Rossi D (2018) Age-related clonal hematopoiesis and monoclonal B‑cell lymphocytosis / chronic lymphocytic leukemia: A new association? Haematologica 103(5):751–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coombs CC, Zehir A, Devlin SM et al (2017) Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and impacts clinical outcome. Cell Stem Cell 21:374–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Culla AH, Snetsingera B, Buckstein R et al (2017) Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol 55:56–70

    Article  CAS  Google Scholar 

  11. Desai P, Mencia-Trinchant N, Savenkov A et al (2018) Somatic mutations precede acute myeloid leukemia yeras before diagnosis. Nat Med 24:1015–1023

    Article  CAS  PubMed  Google Scholar 

  12. Fabiani E, Falconi G, Fianchi L et al (2017) Clonal evolution in therapy-related neoplasms. Oncotarget 8:12031–12040

    PubMed  PubMed Central  Google Scholar 

  13. Fuster JF, MacLauchlan S, Zuriaga MA et al (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355(6327):842–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganster C, Westhogen G, Beier F et al (2017) Incresaed serum ferritine and genetic instability in myelodysplastic syndromes. Leuk Res 55(S1):37

    Article  Google Scholar 

  15. Ganster C, Shirneshan K, Dierks S et al (2018) Clonal evolution is much more frequent in MDS as known as yet. Hemasphere 2(S1):200

    Google Scholar 

  16. Genovese G, Kähler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gibson CJ, Lindsley RC, Tchekmedyian V et al (2017) Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol 35:1598–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gillis NK, Ball M, Zhang Q et al (2017) Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol 18:112–121

    Article  PubMed  Google Scholar 

  19. Haase D, Stevenson KE, Neuberg D et al (2019) TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. https://doi.org/10.1038/s41375-018-0351-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hadzijusufovic E, Albrecht-Schgoer K, Huber K et al (2017) Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia 31(11):2388–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heuser M, Thol F, Ganser A (2016) Clonal hematopoiesis of indeterminate potential. Dtsch Arztebl Int 113(18):317–322

    PubMed  PubMed Central  Google Scholar 

  22. Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23(5):700–713 (doi: 10.1016 /j.stem.2018.10.004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jadersten M, Saft L, Smith A et al (2011) TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 29:1971–1979

    Article  PubMed  Google Scholar 

  24. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaiswal S, Natarajan P, Silver AJ et al (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377:111–121

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kwok B, Hall JM, Witte JS et al (2015) MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenies of undetermined significance. Blood 126:2355–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lambert C, Wu Y, Aanei C (2016) Bone marrow immunity and myelodysplasia. Front Oncol 20(6):172

    Google Scholar 

  28. Malcovati L, Galli A, Travaglino E et al (2017) Clinical significance of somatic mutation in unexplained blood cytopenia. Blood 129:3371–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Makishima H, Yoshizato T, Yoshida K et al (2017) Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet 49(2):204–212

    Article  CAS  PubMed  Google Scholar 

  30. Martin R, Acha P, Ganster C et al (2018) Targeted deep sequencing of CD34+ cells from peripheral blood can reproduce bone marrow molecular profile in myelodysplastic syndromes. Am J Hematol 93(6):E152–E154

    Article  PubMed  PubMed Central  Google Scholar 

  31. Medyouf H (2017) The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications. Blood 129(12):1617–1626

    Article  CAS  PubMed  Google Scholar 

  32. Meisel M, Hinterleitner R, Pacis A et al (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moran-Crusio K, Reavie L, Shih A et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Negoro E, Nagata Y, Clemente MJ et al (2017) Origins of myelodysplastic syndromes after aplastic anemia. Blood 130:1953–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neukirchen J, Lauseker M, Hildebrandt B et al (2017) Cytogenetic clonal evolution in myelodysplastic syndromes is associated with inferior prognosis. Cancer 123(23):4608–4616

    Article  CAS  PubMed  Google Scholar 

  36. Ogawa S (2016) Clonal hematopoiesis in acquired aplastic anemia. Blood 128(3):337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perdigones N, Perin JC, Schiano I et al (2016) Clonal hematopoiesis in patients with dyskeratosis congenita. Am J Hematol 91(12):1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raaijmakers MHGP (2014) Disease progression in myelodysplastic syndromes: do mesenchymal cells pave the way? Cell Stem Cell 14(6):695–697

    Article  CAS  PubMed  Google Scholar 

  39. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131

    Article  CAS  PubMed  Google Scholar 

  40. Sano S, Oshima K, Wang Y et al (2018) Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol 71(8):875–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schanz J, Cevik N, Fonatsch C et al (2018) Detailed analysis of clonal evolution and cytogenetic evolution patterns in patients with myelodysplastic syndromes (MDS) and related myeloid disorders. Blood Cancer J 8(3):28

    Article  PubMed  PubMed Central  Google Scholar 

  42. Severson EA, Riedlinger GM, Connelly CF et al (2018) Detection of clonal hematopoiesis of indeterminate potential in clinical sequencing of solid tumor specimens. Blood 131(22):2501–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shimizu N, Hasunuma H, Watanabe Y et al (2016) The simultaneous elevation of oxidative stress markers and Wilms’ Tumor 1 gene during the progression of myelodysplastic syndrome. Intern Med 55(24):3661–3664

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shlush LI, Zandi S, Mitchell A (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488):328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Silver AJ, Jaiswal S (2019) Chapter Three – Clonal hematopoiesis: Pre-cancer PLUS. Advances in Cancer Research 141:85–128

    Article  PubMed  Google Scholar 

  46. Steensma DP, Bejar R, Jaiswal S et al (2015) Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndrome. Blood 126:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steensma DP (2018) Clinical consequences of clonal hematopoiesis of indeterminate potential. Blood Adv 2(22):3404–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi K, Wang F, Kantarjian H et al (2017) Pre-leukemic clonal hematopoises amd the risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111

    Article  PubMed  Google Scholar 

  49. Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518(7540):552–555

    Article  CAS  PubMed  Google Scholar 

  50. Xie M, Lu C, Wanj J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancie. Nat Med 20(12):1472–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Y, Zhai W, Zhao M et al (2015) Effects of iron overload on the Bone marrow microenvironment in mice. PLoS ONE 10(3):e120219. https://doi.org/10.1371/journal.pone.0120219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haase D (2019) Klonale Hämatopoese Teil 1. best practice onkologie 14(5):166–179. https://doi.org/10.1007/s11654-019-0141-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Haase.

Ethics declarations

Interessenkonflikt

D. Haase gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Ein Abkürzungsverzeichnis finden Sie am Ende des Beitrages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haase, D. Klonale Hämatopoese – Teil 2. best practice onkologie 14, 360–372 (2019). https://doi.org/10.1007/s11654-019-00167-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-019-00167-6

Schlüsselwörter

Keywords

Navigation