Skip to main content
Log in

Robust Observer-based Control of Nonlinear Multi-Omnidirectional Wheeled Robot Systems via High Order Sliding-mode Consensus Protocol

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

This paper presents a novel observer-based controller for a class of nonlinear multi-agent robot models using the high order sliding mode consensus protocol. In many applications, demand for autonomous vehicles is growing; omnidirectional wheeled robots are suggested to meet this demand. They are flexible, fast, and autonomous, able to find the best direction and can move on an optional path at any time. Multi-agent omnidirectional wheeled robot (MOWR) systems consist of several similar or different robots and there are multiple different interactions between their agents, thus the MOWR systems have complex dynamics. Hence, designing a robust reliable controller for the nonlinear MOWR operations is considered an important obstacles in the science of the control design. A high order sliding mode is selected in this work that is a suitable technique for implementing a robust controller for nonlinear complex dynamics models. Furthermore, the proposed method ensures all signals involved in the multi-agent system (MAS) are uniformly ultimately bounded and the system is robust against the external disturbances and uncertainties. Theoretical analysis of candidate Lyapunov functions has been presented to depict the stability of the overall MAS, the convergence of observer and tracking error to zero, and the reduction of the chattering phenomena. In order to illustrate the promising performance of the methodology, the observer is applied to two nonlinear dynamic omnidirectional wheeled robots. The results display the meritorious performance of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. R. Khoygani, R. Ghasemi, A. R. Vali. Intelligent nonlinear observer design for a class of nonlinear discrete-time flexible joint robot. Intelligent Service Robotics, vol. 8, no. 1, pp. 45–56, 2015. DOI: https://doi.org/10.1007/s11370-014-0162-x.

    Article  Google Scholar 

  2. S. R. Sahoo, S. S. Chiddarwar. Flatness-based control scheme for hardware-in-the-loop simulations of omnidirectional mobile robot. Simulation, vol. 96, no. 2, pp. 169–183, 2020. DOI: https://doi.org/10.1177/0037549719859064.

    Article  Google Scholar 

  3. V. Alakshendra, S. S. Chiddarwar. Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics, vol. 87, no. 4, pp. 2147–2169, 2017. DOI: https://doi.org/10.1007/s11071-016-3179-1.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Alakshendra, S. S. Chiddarwar. Simultaneous balancing and trajectory tracking control for an omnidirectional mobile robot with a cylinder using switching between two robust controllers. International Journal of Advanced Robotic Systems, vol. 14, no. 6, pp. 1–16, 2017. DOI: https://doi.org/10.1177/1729881417738728.

    Article  Google Scholar 

  5. B. E. Byambasuren, D. Kim, M. Oyun-Erdene, C. Bold, J. Yura. Inspection robot based mobile sensing and power line tracking for smart grid. Sensors, vol. 16, no. 2, Article number 250, 2016. DOI: https://doi.org/10.3390/s16020250.

  6. J. M. Bengochea-Guevara, J. Conesa-Munoz, D. Andujar, A. Ribeiro. Merge fuzzy visual servoing and GPS-based planning to obtain a proper navigation behavior for a small crop-inspection robot. Sensors, vol. 16, no. 3, Article number 276, 2016. DOI: https://doi.org/10.3390/s16030276.

  7. J. G. Blitch. Artificial intelligence technologies for robot assisted urban search and rescue. Expert Systems with Applications, vol. 11, no. 2, pp. 109–124, 1996. DOI: https://doi.org/10.1016/0957-4174(96)00038-3.

    Article  Google Scholar 

  8. S. Fish. UGVs in future combat systems. In Proceedings of SPIE 5422, Unmanned Ground Vehicle Technology VI, Defense and Security, SPIE, Orlando, USA, pp. 288–291, 2004. DOI: https://doi.org/10.1117/12.537966.

    Google Scholar 

  9. J. Lafaye, D. Gouaillier, P. B. Wieber. Linear model predictive control of the locomotion of Pepper, a humanoid robot with omnidirectional wheels. In Proceedings of IEEE-RAS International Conference on Humanoid Robots, IEEE, Madrid, Spain, pp. 336–341, 2014. DOI: https://doi.org/10.1109/HUMANOIDS.2014.7041381.

    Google Scholar 

  10. M. Wada, H. H. Asada. Design and control of a variable footprint mechanism for holonomic omnidirectional vehicles and its application to wheelchairs. IEEE Transactions on Robotics and Automation, vol. 15, no. 6, pp. 978–989, 1999. DOI: https://doi.org/10.1109/70.817663.

    Article  Google Scholar 

  11. United Nations. World Population Ageing 2013, [Online], Available: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulation-Ageing2013.pdf, December 15, 2015.

  12. World Health Organization. World Report on Ageing and Health, [Online], Available: http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811-eng.pdf, February 18, 2016.

  13. C. Moron, A. Payan, A. Garcia, F. Bosquet. Domotics project housing block. Sensors, vol. 16, no. 5, Article number 741, 2016. DOI: https://doi.org/10.3390/s16050741.

  14. E. Clotet, D. Martinez, J. Moreno, M. Tresanchez, J. Palacin. Assistant Personal Robot (APR): Conception and application of a Tele-operated assisted living robot. Sensors, vol. 16, no. 5, Article number 610, 2016. DOI: https://doi.org/10.3390/s16050610.

  15. M. Tavakoli, J. Lourenco, C. Viegas, P. Neto, A. T. De Almeida. The hybrid OmniClimber robot: Wheel based climbing, arm based plane transition, and switchable magnet adhesion. Mechatronics, vol. 36, pp. 136–146, 2016. DOI: https://doi.org/10.1016/j.mechatronics.2016.03.007.

    Article  Google Scholar 

  16. J. Santos, A. Conceicao, T. Santos, H. Araujo. Remote control of an omnidirectional mobile robot with time-varying delay and noise attenuation. Mechatronics, vol. 52, pp. 7–21, 2018. DOI: https://doi.org/10.1016/j.mechatronics.2018.04.003.

    Article  Google Scholar 

  17. D. B. Zhao, J. Q. Yi. Introduction to Omni-directional Mobile Robot, Beijing, China: Science Press, 2010. (in Chinese)

    Google Scholar 

  18. X. Y. Deng, J. Q. Yi, D. B. Zhao. Kinematic analysis of an omni-directional mobile robot. Robot, vol. 26, no. 1, pp. 49–53, 2004. DOI: https://doi.org/10.3321/j.issn:1002-0446.2004.01.011. (in Chinese)

    Google Scholar 

  19. C. Ren, S. G. Ma. Trajectory tracking control of an omnidirectional mobile robot with friction compensation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Daejeon, South Korea, pp. 5361–5366, 2016. DOI: https://doi.org/10.1109/IROS.2016.7759788.

    Google Scholar 

  20. H. P. Oliveira, A. J. Sousa, A. P. Moreira, P. J. Costa. Dynamical models for omni-directional robots with 3 and 4 wheels. In Proceedings of the 5th International Conference on Informatics in Control, Automation and Robotics, INSTICC Press, Madeira, Portugal, pp. 189–196, 2008.

    Google Scholar 

  21. C. Sprunk, B. Lau, P. Pfaff, W. Burgard. An accurate and efficient navigation system for omnidirectional robots in industrial environments. Autonomous Robots, vol. 41, no. 2, pp. 473–493, 2017. DOI: https://doi.org/10.1007/s10514-016-9557-1.

    Article  Google Scholar 

  22. D. S. Lal, A. Vivek. Dynamic modeling and control of omni-directional mobile robots. In Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, IEEE, Kollam, India, pp. 1–7, 2017. DOI: https://doi.org/10.1109/ICCPCT.2017.8074219.

    Google Scholar 

  23. T. F. Wu, H. C. Huang, P. S. Tsai, N. T. Hu, Z. Q. Yang. The tracking control design of adaptive fuzzy CMAC for an omni-directional mobile robot. Journal of Computers, vol. 28, no. 1, pp. 247–260, 2017. DOI: https://doi.org/10.3966/199115592017022801019.

    Google Scholar 

  24. D. Xu, D. B. Zhao, J. Q. Yi, X. M. Tan. Trajectory tracking control of omnidirectional wheeled mobile manipulators: Robust neural network-based sliding mode approach. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, vol. 39, no. 3, pp. 788–799, 2009. DOI: https://doi.org/10.1109/TSMCB.2008.2009464.

    Article  Google Scholar 

  25. C. C. Tsai, H. L. Wu, F. C. Tai, Y. S. Chen. Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks. International Journal of Fuzzy Systems, vol. 19, no. 5, pp. 1375–1391, 2017. DOI: https://doi.org/10.1007/s40815-016-0239-0.

    Article  MathSciNet  Google Scholar 

  26. M. Fatima, H. Assia, H. Habib. Adaptive nonlinear control of a synchronous generator. Carpathian Journal of Electronic and Computer Engineering, vol. 11, no. 2, pp. 39–43, 2018. DOI: https://doi.org/10.2478/cjece-2018-0017.

    Article  Google Scholar 

  27. M. P. Aghababa. Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller. Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2670–2681, 2012. DOI: https://doi.org/10.1016/j.cnsns.2011.10.028.

    Article  MathSciNet  MATH  Google Scholar 

  28. K. Shojaei, A. M. Shahri. Adaptive robust time-varying control of uncertain non-holonomic robotic systems. IET Control Theory & Apphcations, vol. 6, no. 1, pp. 90–102, 2012. DOI: https://doi.org/10.1049/iet-cta.2010.0655.

    Article  MathSciNet  Google Scholar 

  29. S. T. Kao, W. J. Chiou, M. T. Ho. Integral sliding mode control for trajectory tracking control of an omnidirectional mobile robot. In Proceedings of the 8th Asian Control Conference, IEEE, Kaohsiung, China, pp. 765–770, 2011.

    Google Scholar 

  30. S. V. Drakunov, V. I. Utkin. Sliding mode control in dynamic systems. International Journal of Control, vol. 55, no. 4, pp. 1029–1037, 1992. DOI: https://doi.org/10.1080/00207179208934270.

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Long, D. B. Ren, J. Y. Zhang. Terminal sliding mode control for vehicle longitudinal following in automated highway system. In Proceedings of the 27th Chinese Control Conference, IEEE, Kunming, China, pp. 605–608, 2008. DOI: https://doi.org/10.1109/CHICC.2008.4605782.

    Google Scholar 

  32. Y. H. Chang, C. W. Chang, W. C. Chan. Fuzzy sliding-mode consensus control for multi-agent systems. In Proceedings of American Control Conference, IEEE, San Francisco, USA, pp. 1636–1641, 2011. DOI: https://doi.org/10.1109/ACC.2011.5991103.

    Google Scholar 

  33. C. W. Chang, C. L. Chen, Y. H. Chang, C. W. Tao. Adaptive fuzzy sliding-mode formation control for second-order multi-agent systems. In Proceedings of International Conference on System Science and Engineering, IEEE, Taipei, China, pp. 310–314, 2010. DOI: https://doi.org/10.1109/ICSSE.2010.5551778.

    Google Scholar 

  34. S. Muhammad, M. Idrees. Comparative study of hierarchical sliding mode control and decoupled sliding mode control. In Proceedings of the 12th IEEE Conference on Industrial Electronics and Applications, IEEE, Siem Reap, Cambodia, pp. 818–824, 2017. DOI: https://doi.org/10.1109/ICIEA.2017.8282952.

    Google Scholar 

  35. S. Alvarez-Rodriguez, G. Flores, N. A. Ochoa. Variable gains shding mode control. International Journal of Control, Automation and Systems, vol. 17, no. 3, pp. 555–564, 2019. DOI: https://doi.org/10.1007/s12555-018-0095-9.

    Article  Google Scholar 

  36. N. Zhao, J. D. Zhu. Sliding mode control for robust consensus of linear multi-agent systems. In Proceedings of the 10th World Congress on Intelligent Control and Automation, IEEE, Beijing, China, pp. 1378–1382, 2012. DOI: https://doi.org/10.1109/WCICA.2012.6358095.

    Chapter  Google Scholar 

  37. M. R. James, J. S. Baras. An observer design for nonlinear control systems. Analysis and Optimization of Systems, A. Bensoussan, J. L. Lions, Eds., Berlin Heidelberg, Germany: Springer, pp. 170–180, 1988. DOI: https://doi.org/10.1007/BFb0042212.

    Chapter  Google Scholar 

  38. V. Gazi, B. Fidan. Coordination and control of multi-agent dynamic systems: Models and approaches. Swarm Robotics, E. Sahin, W. M. Spears, A. F. T. Winfield, Eds., Berlin Heidelberg, Germany: Springer, pp. 71–102, 2007. DOI: https://doi.org/10.1007/978-3-540-71541-2_6.

    Chapter  Google Scholar 

  39. X. J. Long, S. H. Yu, Y. L. Wang, L. N. Jin. Leader-follower consensus of multi-agent system with external disturbance based on integral sliding mode control. In Proceedings of the 33rd Chinese Control Conference, IEEE, Nanjing, China, pp. 1740–1745, 2014. DOI: https://doi.org/10.1109/ChiCC.2014.6896891.

    Chapter  Google Scholar 

  40. U. B. Kamble, J. O. Chandle, V. S. Lahire, R. D. Langde. Second order twisting sliding mode control of multi-agent network with input disturbance. In Proceedings of Fourth International Conference on Computing, Communications and Networking Technologies, IEEE, Tiruchengode, India, 2013. DOI: https://doi.org/10.1109/ICCCNT.2013.6726495.

    Google Scholar 

  41. C. E. Ren, C. L. P. Chen. Sliding mode leader-following consensus controllers for second-order non-linear multi-agent systems. IET Control Theory & Applications, vol. 9, no. 10, pp. 1544–1552, 2015. DOI: https://doi.org/10.1049/iet-cta.2014.0523.

    Article  MathSciNet  Google Scholar 

  42. H. K. Khalil. Nonlinear Systems, 3rd ed., New York, USA: Prentice-Hall, 2001.

    Google Scholar 

  43. M. Panda, B. Das, B. Subudhi, B. B. Pati. A comprehensive review of path planning algorithms for autonomous underwater vehicles. International Journal of Automation and Computing, vol. 17, no. 3, pp. 321–352, 2020. DOI: https://doi.org/10.1007/s11633-019-1204-9.

    Article  Google Scholar 

  44. N. Hacene, B. Mendil. Fuzzy behavior-based control of three wheeled omnidirectional mobile robot. International Journal of Automation and Computing, vol. 16, no. 2, pp. 163–185, 2019. DOI: https://doi.org/10.1007/s11633-018-1135-x.

    Article  Google Scholar 

  45. A. Kumar, A. Ojha. Experimental evaluation of certain pursuit and evasion schemes for wheeled mobile robots. International Journal of Automation and Computing, vol. 16, no. 4, pp. 491–510, 2019. DOI: https://doi.org/10.1007/s11633-018-1151-x.

    Article  Google Scholar 

  46. I. Ardiyanto, J. Miura. Time-space viewpoint planning for guard robot with chance constraint. International Journal of Automation and Computing, vol. 16, no. 4, pp. 475–490, 2019. DOI: https://doi.org/10.1007/s11633-018-1146-7.

    Article  Google Scholar 

  47. H. X. Ma, W. Zou, Z. Zhu, C. Zhang, Z. B. Kang. Selection of observation position and orientation in visual servoing with eye-in-vehicle configuration for manipulator. International Journal of Automation and Computing, vol. 16, no. 6, pp. 761–774, 2019. DOI: https://doi.org/10.1007/s11633-019-1181-z.

    Article  Google Scholar 

  48. J. Moreno, E. Clotet, R. Lupianez, M. Tresanchez, D. Martinez, T. Palleja, J. Casanovas, J. Palacin. Design, implementation and validation of the three-wheel holonomic motion system of the assistant personal robot (APR). Sensors, vol. 16, no. 10, Article number 1658, 2016. DOI: https://doi.org/10.3390/s16101658.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rahimi Khoygani.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

M. R. Rahimi Khoygani received the B.Sc. degree in electrical power engineering from the Islamic Azad University (IAU), Iran in 2012, the M.Sc. degree in control engineering from IAU, Iran in 2015. He is currently a member of Department of Control Engineering, Qom University, Iran.

His research interests include neural net, fuzzy systems, intelligent systems, robotics, control of nonlinear systems, nonlinear observer, intelligent state estimation, and adaptive control.

R. Ghasemi received the B.Sc. degree in electrical engineering from Semnan University, Iran in 2000, and the M. Sc. and Ph.D. degrees in control engineering from Amirkabir University of Technology, Iran in 2004 and 2009, respectively. He joined Department of Electrical Engineering, Qom University, Iran, where he is currently a professor of electrical engineering. His research interests include large-scale systems, adaptive control, robust control, nonlinear control, and intelligent systems.

P. Ghayoomi received the B.Sc. and M.Sc. degrees in control engineering from Islamic Azad University, Iran in 2013 and 2016, respectively. He is currently a member of Department of Control Engineering, Qom University, Iran.

His research interests include intelligent systems, robotics, nonlinear observer, and adaptive control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoygani, M.R.R., Ghasemi, R. & Ghayoomi, P. Robust Observer-based Control of Nonlinear Multi-Omnidirectional Wheeled Robot Systems via High Order Sliding-mode Consensus Protocol. Int. J. Autom. Comput. 18, 787–801 (2021). https://doi.org/10.1007/s11633-020-1254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-020-1254-z

Keywords

Navigation