Skip to main content
Log in

Computational Decision Support System for ADHD Identification

  • Research Article
  • Published:
International Journal of Automation and Computing Aims and scope Submit manuscript

Abstract

Attention deficit/hyperactivity disorder (ADHD) is a common disorder among children. ADHD often prevails into adulthood, unless proper treatments are facilitated to engage self-regulatory systems. Thus, there is a need for effective and reliable mechanisms for the early identification of ADHD. This paper presents a decision support system for the ADHD identification process. The proposed system uses both functional magnetic resonance imaging (fMRI) data and eye movement data. The classification processes contain enhanced pipelines, and consist of pre-processing, feature extraction, and feature selection mechanisms. fMRI data are processed by extracting seed-based correlation features in default mode network (DMN) and eye movement data using aggregated features of fixations and saccades. For the classification using eye movement data, an ensemble model is obtained with 81% overall accuracy. For the fMRI classification, a convolutional neural network (CNN) is used with 82% accuracy for the ADHD identification. Both ensemble models are proved for overfitting avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Sridhar, S. Bhat, U. R. Acharya, H. Adeli, G. M. Bairy. Diagnosis of attention deficit hyperactivity disorder using imaging and signal processing techniques. Computers in Biology and Medicine, vol. 88, pp. 93–99, 2017. DOI: https://doi.org/10.1016/j.compbiomed.2017.07.009.

    Google Scholar 

  2. D. A. Meedeniya, I. D. Rubasinghe. A review of supportive computational approaches for neurological disorder identification. Interdisciplinary Approaches to Altering Neurodevelopmental Disorders, T. Wadhera, D. Kakkar, Eds., IGI global, Chapter 16, Hershey, USA: IGI Global, pp. 271–302, 2020. DOI: https://doi.org/10.4018/978-1-7998-3069-6.ch016.

    Google Scholar 

  3. B. Zablotsky, L. I. Black, M. J. Maenner, L. A. Schieve, M. L. Danielson, R. H. Bitsko, S. J. Blumberg, M. D. Kogan, C. A. Boyle. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics, vol. 144, no. 4, Article number e20190811, 2019. DOI: https://doi.org/10.1542/peds.2019-0811.

    Google Scholar 

  4. S. De Silva, S. Dayarathna, G. Ariyarathne, D. Meedeniya, S. Jayarathna. A survey of attention deficit hyperactivity disorder identification using psychophysiological data. International Journal of Online and Biomedical Engineering, vol. 15, no. 13, pp. 61–76, 2019. DOI: https://doi.org/10.3991/ijoe.v15i13.10744.

    Google Scholar 

  5. L. Q. Uddin, A. M. C. Kelly, B. B. Biswal, D. S. Margulies, Z. Shehzad, D. Shaw, M. Ghaffari, J. Rotrosen, L. A. Adler, F. X. Castellanos, M. P. Milham. Network homogeneity reveals decreased integrity of default-mode network in ADHD. Journal of Neuroscience Methods, vol. 169, no. 1, pp. 249–254, 2008. DOI: https://doi.org/10.1016/j.jneumeth.2007.11.031.

    Google Scholar 

  6. I. D. Rubasinghe, D. A. Meedeniya. Automated neuroscience decision support framework. Deep Learning Techniques for Biomedical and Health Informatics, B. Agarwal, V. E. Balas, L. C. Jain, R. C. Poonia, Manisha, Eds., Cambridge, USA: Academic Press, pp.305–326, 2020. DOI: https://doi.org/10.1016/b978-0-12-819061-6.00013-6.

    Google Scholar 

  7. A. M. P. Michalek, G. Jayawardena, S. Jayarathna. Predicting ADHD using eye gaze metrics indexing working memory capacity. Computational Models for Biomedical Reasoning and Problem Solving, C. H. Chen, S. C. S. Cheung, Eds., Hershey: IGI Global, Chapter 3, pp. 66–88, 2019. DOI: https://doi.org/10.4018/978-1-5225-7467-5.ch003.

    Google Scholar 

  8. N. N. J. Rommelse, S. Van Der Stigchel, J. A. Sergeant. A review on eye movement studies in childhood and adolescent psychiatry. Brain and Cognition, vol. 68, no. 3, pp. 391–414, 2008. DOI: https://doi.org/10.1016/j.bandc.2008.08.025.

    Google Scholar 

  9. P. Deans, L. O’Laughlin, B. Brubaker, N. Gay, D. Krug. Use of eye movement tracking in the differential diagnosis of attention deficit hyperactivity disorder (ADHD) and reading disability. Psychology, vol. 1, no. 4, pp. 238–246, 2010. DOI: https://doi.org/10.4236/psych.2010.14032.

    Google Scholar 

  10. S. Van Der Stigchel, M. Meeter, J. Theeuwes. Eye movement trajectories and what they tell us. Neuroscience & Biobehavioral Reviews, vol. 30, no. 5, pp. 666–679, 2006. DOI: https://doi.org/10.1016/j.neubiorev.2005.12.001.

    Google Scholar 

  11. S. De Silva, S. Dayarathna, G. Ariyarathne, D. Meedeniya, S. Jayarathna, A. M. P. Michalek, G. Jayawardena. A rule-based system for ADHD identification using eye movement data. In Proceedings of Moratuwa Engineering Research Conference, IEEE, Moratuwa, Sri Lanka, pp. 538–543, 2019. DOI: https://doi.org/10.1109/mercon.2019.8818865.

    Google Scholar 

  12. K. Krejtz, A. T. Duchowski, A. Niedzielska, C. Biele, I. Krejtz. Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze. PLoS One, vol. 13, no. 9, Article number e0203629, 2018. DOI: https://doi.org/10.1371/journal.pone.0203629.

    Google Scholar 

  13. M. Fried, E. Tsitsiashvili, Y. S. Bonneh, A. Sterkin, T. Wygnanski-Jaffe, T. Epstein, U. Polat. ADHD subjects fail to suppress eye blinks and microsaccades while anticipating visual stimuli but recover with medication. Vision Research, vol. 101, pp. 62–72, 2014. DOI: https://doi.org/10.1016/j.visres.2014.05.004.

    Google Scholar 

  14. R. G. Ross, J. G. Harris, A. Olincy, A. Radant. Eye movement task measures inhibition and spatial working memory in adults with schizophrenia, ADHD, and a normal comparison group. Psychiatry Research, vol. 95, no. 1, pp. 35–42, 2000. DOI: https://doi.org/10.1016/s0165-1781(00)00153-0.

    Google Scholar 

  15. R. G. Ross, A. Olincy, J. G. Harris, B. Sullivan, A. Radant. Smooth pursuit eye movements in schizophrenia and attentional dysfunction: Adults with schizophrenia, ADHD, and a normal comparison group. Biological Psychiatry, vol. 48, no. 3, pp. 197–203, 2000. DOI: https://doi.org/10.1016/s0006-3223(00)00825-8.

    Google Scholar 

  16. D. P. Munoz, I. T. Armstrong, K. A. Hampton, K. D. Moore. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. Journal of Neurophysiology, vol. 90, no. 1, pp. 503–514, 2003. DOI: https://doi.org/10.1152/jn.00192.2003.

    Google Scholar 

  17. G. J. Hyun, J. W. Park, J. H. Kim, K. J. Min, Y. S. Lee, S. M. Kim, D. H. Han. Visuospatial working memory assessment using a digital tablet in adolescents with attention deficit hyperactivity disorder. Computer Methods and Programs in Biomedicine, vol. 157, pp. 137–143, 2018. DOI: https://doi.org/10.1016/j.cmpb.2018.01.022.

    Google Scholar 

  18. I. H. Witten, E. Frank, M. A. Hall, C. J. Pal. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed., San Francisco, USA: Morgan Kaufmann, 2016.

    Google Scholar 

  19. M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms, 3rd ed., Hoboken, USA: John Wiley & Sons, 2019.

    MATH  Google Scholar 

  20. Y. H. Shi, W. M. Zeng, N. Z. Wang, D. T. L. Chen. A novel fMRI group data analysis method based on data-driven reference extracting from group subjects. Computer Methods and Programs in Biomedicine, vol. 122, no. 3, pp. 362–371, 2015. DOI: https://doi.org/10.1016/j.cmpb.2015.09.002.

    Google Scholar 

  21. NITRC: ADHD-200, 2019, [Online], Available: https://www.nitrc.org/ir/app/template/, May 2, 2020.

  22. B. Jie, M. X. Liu, D. G. Shen. Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Medical Image Analysis, vol. 47, pp. 81–94, 2018. DOI: https://doi.org/10.1016/j.media.2018.03.013.

    Google Scholar 

  23. S. De Silva, S. Dayarathna, G. Ariyarathne, D. Meedeniya, S. Jayarathna. fMRI feature extraction model for ADHD classification using convolutional neural network. International Journal of E-Health and Medical Communications, vol. 12, no. 1, pp. 81–105, 2021. DOI: https://doi.org/10.4018/IJEHMC.2021010106.

    Google Scholar 

  24. L. Zou, J. N. Zheng, C. Y. Miao, M. Mckeown, Z. J. Wang. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access, vol. 5, pp. 23626–23636, 2017. DOI: https://doi.org/10.1109/access.2017.2762703.

    Google Scholar 

  25. V. Subbaraju, M. B. Suresh, S. Sundaram, S. Narasimhan. Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach. Medical Image Analysis, vol. 35, pp. 375–389, 2017. DOI: https://doi.org/10.1016/j.media.2016.08.003.

    Google Scholar 

  26. V. Subbaraju, S. Sundaram, S. Narasimhan. Identification of lateralized compensatory neural activities within the social brain due to autism spectrum disorder in adolescent males. European Journal of Neuroscience, vol. 47, no. 6, pp. 631–642, 2018. DOI: https://doi.org/10.1111/ejn.13634.

    Google Scholar 

  27. H. Dhayne, R. Haque, R. Kilany, Y. Taher. In search of big medical data integration solutions - A comprehensive survey. IEEE Access, vol. 7, pp. 91265–912900, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2927491.

    Google Scholar 

  28. G. Ariyarathne, S. De Silva, S. Dayarathna, D. Meedeniya, S. Jayarathne. ADHD identification using convolutional neural network with seed-based approach for fMRI data. In Proceedings of the 9th International Conference on Software and Computer Applications, ACM, Langkawi, Malaysia, pp. 31–35, 2020. DOI: https://doi.org/10.1145/3384544.3384552.

    Google Scholar 

  29. X. L. Peng, P. Lin, T. S. Zhang, J. Wang. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS One, vol. 8, no. 11, Article number e79476, 2013. DOI: https://doi.org/10.1371/journal.pone.0079476.

    Google Scholar 

  30. D. P. Kuang, X. J. Guo, X. An, Y. L. Zhao, L. H. He. Discrimination of ADHD based on fMRI data with deep belief network. Intelligent Computing in Bioinformatics, D. S. Huang, K. Han, M. Gromiha, Eds., Cham, Switzerland: Springer, pp. 225–232, 2014. DOI: https://doi.org/10.1007/978-3-319-09330-727.

    Google Scholar 

  31. F. X. Castellanos, D. S. Margulies, C. Kelly, L. Q. Uddin, M. Ghaffari, A. Kirsch, D. Shaw, Z. Shehzad, A. Di Martino, B. Biswal, E. J. S. Sonuga-Barke, J. Rotrosen, L. A. Adler, M. P. Milham. Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry, vol. 63, no. 3, pp. 332–337, 2008. DOI: https://doi.org/10.1016/j.biopsych.2007.06.025.

    Google Scholar 

  32. C. Fassbender, H. Zhang, W. M. Buzy, C. R. Cortes, D. Mizuiri, L. Beckett, J. B. Schweitzer. A lack of default network suppression is linked to increased distractibility in ADHD. Brain Research, vol. 1273, pp. 114–128, 2009. DOI: https://doi.org/10.1016/j.brainres.2009.02.070.

    Google Scholar 

  33. A. M. S. Aradhya, A. Joglekar, S. Suresh, M. Pratama. Deep transformation method for discriminant analysis of multi-channel resting state fMRI. In Proceedings of the 33rd AAAI Conference on Artifícial Intelligence, AAAI, Hawaii, USA, pp. 2556–2563, 2019. DOI: https://doi.org/10.1609/aaai.v33i01.33012556.

    Google Scholar 

  34. A. M. S. Aradhya, V. Subbaraju, S. Sundaram and N. Sundararajan. Regularized spatial filtering method (RSFM) for detection of attention deficit hyperactivity disorder (ADHD) from resting-state functional magnetic resonance imaging (rs-fMRI). In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Honolulu, USA, USA, pp. 5541–5544, 2018. DOI: https://doi.org/10.1109/embc.2018.8513522.

    Google Scholar 

  35. K. Konrad, S. B. Eickhoff. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder Human Brain Mapping, vol. 31, no. 6, pp. 904–916, 2010. DOI: https://doi.org/10.1002/hbm.21058.

    Google Scholar 

  36. I. A. Strigo, S. C. Matthews, A. N. Simmons. Decreased frontal regulation during pain anticipation in unmedicated subjects with major depressive disorder. Translational Psychiatry, vol. 3, no. 3, Article number e239, 2013. DOI: https://doi.org/10.1038/tp.2013.15.

    Google Scholar 

  37. A. J. Hao, B. L. Ha, C. H. Yin. Discrimination of ADHD children based on deep Bayesian network. In Proceedings of IET International Conference on Biomedical Image and Signal Processing, IEEE, Beijing, China, 2015. DOI: https://doi.org/10.1049/cp.2015.0764.

    Google Scholar 

  38. A. Tenev, S. Markovska-Simoska, L. Kocarev, J. Pop-Jordanov, A. Muller, G. Candrian. Machine learning approach for classification of ADHD adults. International Journal of Psychophysiology, vol. 93, no. 1, pp. 162–166, 2014. DOI: https://doi.org/10.1016/j.ijpsycho.2013.01.008.

    Google Scholar 

  39. S. Sartipi, H. Kalbkhani, P. Ghasemzadeh, M. G. Shayesteh. Stockwell transform of time-series of fMRI data for diagnoses of attention deficit hyperactive disorder. Applied Soft Computing, vol. 86, Article number 105905, 2020. DOI: https://doi.org/10.1016/j.asoc.2019.105905.

  40. D. P. Kuang, L. H. He. Classification on ADHD with deep learning. In Proceedings of International Conference on Cloud Computing and Big Data, IEEE, Wuhan, China, pp. 27–32, 2014. DOI: https://doi.org/10.1109/ccbd.2014.42.

    Google Scholar 

  41. G. Deshpande, P. Wang, D. Rangaprakash, B. Wilamowski. Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Transactions on Cybernetics, vol. 45, no. 12, pp. 2668–2679, 2015. DOI: https://doi.org/10.1109/tcyb.2014.2379621.

    Google Scholar 

  42. G. Brihadiswaran, D. Haputhanthri, S. Gunathilaka, D. Meedeniya, S. Jayarathna. EEG-based processing and classification methodologies for autism spectrum disorder: A review. Journal of Computer Science, vol. 15, no. 8, pp. 1161–1183, 2019. DOI: https://doi.org/10.3844/jcssp.2019.1161.1183.

    Google Scholar 

  43. V. Sachnev, S. Suresh, N. Sundararajan, B. S. Mahanand, M. W. Azeem, S. Saraswathi. Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-Deficit/Hyperactivity disorder. Cognitive Computation, vol. 11, no. 4, pp. 545–559, 2019. DOI: https://doi.org/10.1007/s12559-019-09636-0.

    Google Scholar 

  44. M. Delavarian, F. Towhidkhah, P. Dibajnia, S. Gharibzadeh. Designing a decision support system for distinguishing ADHD from similar children behavioral disorders. Journal of Medical Systems, vol. 36, no. 3, pp. 1335–1343, 2010. DOI: https://doi.org/10.1007/s10916-010-9594-9.

    Google Scholar 

  45. K. C. Chu, Y. S. Huang, C. F. Tseng, H. J. Huang, C. H. Wang, H. Y. Tai. Reliability and validity of DS-ADHD: A decision support system on attention deficit hyperactivity disorders. Computer Methods and Programs in Biomedicine, vol. 140, pp. 241–248, 2017. DOI: https://doi.org/10.1016/j.cmpb.2016.12.003.

    Google Scholar 

  46. ADHD-Care, 2019, [Online], Available: http://bloomingsands-73478.herokuapp.com, May 2, 2020.

  47. T. J. Andrews, S. D. Halpern, D. Purves. Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. The Journal of Neuroscience, vol. 17, no. 8, pp. 2859–2868, 1997. DOI: https://doi.org/10.1523/jneurosci.17-08-02859.1997.

    Google Scholar 

  48. X. Nie, Y. Shao, S. Y. Liu, H. J. Li, A. L. Wan, S. Nie, D. C. Peng, X. J. Dai. Functional connectivity of paired default mode network subregions in primary insomnia. Neuropsychiatric Disease and Treatment, vol. 11, pp. 3085–3093, 2015. DOI: https://doi.org/10.2147/ndt.s95224.

    Google Scholar 

  49. V. K. Ha, J. C. Ren, X. Y. Xu, S. Zhao, G. Xie, V. Masero, A. Hussain. Deep learning based single image super-resolution: A survey. International Journal of Automation and Computing, vol. 16, no. 4, pp. 413–426, 2019. DOI: https://doi.org/10.1007/s11633-019-1183-x.

    Google Scholar 

  50. T. Honderich. The Oxford Companion to Philosophy, 2nd ed., Oxford, UK: Oxford University Press, 2005.

    Google Scholar 

  51. I. Zaidi, M. Chtourou, M. Djemel. Robust neural control of discrete time uncertain nonlinear systems using sliding mode backpropagation training algorithm. International Journal of Automation and Computing, vol. 16, no. 2, pp. 213–225, 2017. DOI: https://doi.org/10.1007/s11633-017-1062-2.

    Google Scholar 

  52. S. Ruder. An overview of gradient descent optimization algorithms, [Online], Available: https://arxiv.org/abs/1609.04747, May 2, 2020.

  53. X. H. Zhou, N. A. Obuchowski, D. K. McClish. Statistical Methods in Diagnostic Medicine, 2nd ed., Hoboken, USA: Wiley, 2011.

    MATH  Google Scholar 

  54. M. H. Zweig, G. Campbell. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clinical Chemistry, vol. 39, no. 4, pp. 561–577, 1993. DOI: https://doi.org/10.1093/clinchem/39.4.561.

    Google Scholar 

  55. I. Unal. Defining an optimal cut-point value in ROC analysis: An alternative approach. Computational and Mathematical Methods in Medicine, vol. 2017, Article number 3762651, 2017. DOI: https://doi.org/10.1155/2017/3762651.

  56. K. H. Zou, C. R. Yu, K. Z. Liu, M. O. Carlsson, J. Cabrera. Optimal thresholds by maximizing or minimizing various metrics via ROC-type analysis. Academic Radiology, vol. 20, no. 7, pp. 807–815, 2013. DOI: https://doi.org/10.1016/j.acra.2013.02.004.

    Google Scholar 

  57. R. Fluss, D. Faraggi, B. Reiser. Estimation of the Youden index and its associated cutoff point. Biometrical Journal, vol. 47, no. 4, pp. 458–472, 2005. DOI: https://doi.org/10.1002/bimj.200410135.

    MathSciNet  MATH  Google Scholar 

  58. N. J. Perkins, E. F. Schisterman. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. American Journal of Epidemiology, vol. 163, no. 7, pp. 670–675, 2006. DOI: https://doi.org/10.1093/aje/kwj063.

    Google Scholar 

  59. I. Subramanian, S. Verma, S. Kumar, A. Jere, K. Anamika. Multi-omics data integration, interpretation, and its application. Bioinformatics and Biology Insights, vol. 14, pp. 1–24, 2020. DOI: https://doi.org/10.1177/1177932219899051.

    Google Scholar 

  60. S. V. Faraone, P. Asherson, T. Banaschewski, J. Biederman, J. K. Buitelaar, J. A. Ramos-Quiroga, L. A. Rohde, E. J. S. Sonuga-Barke, R. Tannock, B. Franke. Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, vol. 1, Article number 15020, 2015. DOI: https://doi.org/10.1038/nrdp.2015.20.

  61. E. Hoekzema, S. Carmona, J. A. Ramos-Quiroga, V. Richarte Fernandez, R. Bosch, J. C. Soliva, M. Rovira, A. Bulbena, A. Tobena, M. Casas, O. Vilarroya. An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD. Human Brain Mapping, vol. 35, no. 4, pp. 1261–1272, 2014. DOI: https://doi.org/10.1002/hbm.22250.

    Google Scholar 

  62. Z. Y. Mao, Y. Su, G. Q. Xu, X. P. Wang, Y. Huang, W. H. Yue, L. Sun, N. X. Xiong. Spatio-temporal deep learning method for ADHD fMRI classification. Information Sciences, vol. 499, pp. 1–11, 2019. DOI: https://doi.org/10.1016/j.ins.2019.05.043.

    Google Scholar 

  63. Q. Xu, M. Zhang, Z. H. Gu, G. Pan. Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs. Neurocomputing, vol. 328, pp. 69–74, 2019. DOI: https://doi.org/10.1016/j.neucom.2018.03.080.

    Google Scholar 

  64. J. Sauro. Measuring usability with the system usability scale (SUS): A practical guide to measuring usability, 2019, [Online], Available: https://measuringu.com/sus/, 4, 2019.

  65. A. Riaz, M. Asad, S. M. M. R. Al Arif, E. Alonso, D. Dima, P. Corr, G. Slabaugh. Deep fMRI: AN end-to-end deep network for classification of fMRI data. In Proceedings of the 15th International Symposium on Biomedical Imaging, IEEE, Washington, USA, pp. 1419–1422, 2018. DOI: https://doi.org/10.1109/isbi.2018.8363838.

    Google Scholar 

  66. G. Jayawardena, A. Michalek, S. Jayarathna. Eye tracking area of interest in the context of working memory capacity tasks. In Proceedings of the 20th International Conference on Information Reuse and Integration for Data Science, IEEE, Los Angeles, USA, pp. 208–215, 2019. DOI: https://doi.org/10.1109/iri.2019.00042.

    Google Scholar 

  67. I. Rubasinghe, D. Meedeniya. Ultrasound nerve segmentation using deep probabilistic programming. Journal of ICT Research and Applications, vol. 13, no. 3, pp. 241–256, 2019. DOI: https://doi.org/10.5614/itbj.ict.res.appl.2019.13.3.5.

    Google Scholar 

  68. Z. J. Yao, J. Bi, Y. X. Chen. Applying deep learning to individual and community health monitoring data: A survey. International Journal of Automation and Computing, vol. 15, no. 6, pp. 643–655, 2018. DOI: https://doi.org/10.1007/s11633-018-1136-9.

    Google Scholar 

  69. D. Haputhanthri, G. Brihadiswaran, S. Gunathilaka, D. Meedeniya, S. Jayarathna, M. Jaime, C. Harshaw. Integration of facial thermography in EEG-based classification of ASD. International Journal of Automation and Computing, to be published, vol. 17, no. 6, pp. 837–854 DOI: https://doi.org/10.1007/s11633-020-1231-6.

Download references

Acknowledgements

This work was supported by Old Dominion University, Norfolk, Virginia, USA and University of Moratuwa, Sri Lanka. We thank the participants of the system usability study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulani Meedeniya.

Additional information

Colored figures are available in the online version at https://link.springer.com/journal/11633

Senuri De Silva is a bachelor student in computer science and engineering at Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

Her research interests include biomedical, machine learning and data mining.

Sanuwani Dayarathna is a bachelor student in computer science and engineering at Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

Her research interests include biomedical, machine learning and data mining.

Gangani Ariyarathne is a bachelor student in computer science and engineering at Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka.

Her research interests include machine learning, data mining, biomedical, and computer security.

Dulani Meedeniya received the Ph.D. degree in computer science from University of St Andrews, UK in 2013. She is a senior lecturer in Department of Computer Science and Engineering, University of Moratuwa, Sri Lanka. She is a Fellow of Higher Education Academy, UK, Member of The Institution of Engineering and Technology, Member of Institute of Electrical and Electronics Engineers, and a Charted Engineer registered at Engineering Council, UK.

Her research interests include software modelling and design, workflow tool support for bioinformatics, data visualization and recommender systems.

Sampath Jayarathna received the Ph. D. degree in computer science from the Texas A&M University - College Station, USA in 2016. He is an assistant professor in computer science at Old Dominion University, USA, where he is associated with Web Science and Digital Libraries (WS-DL) research group. He is a member of Association for Computing Machinery (ACM), IEEE, and Scientific Research Honor Society (Sigma XI).

His research interests include machine learning, information retrieval, data science, eye tracking, and brain-computer interfacing.

Anne M. P. Michalek received the Ph.D. degree in special education from Old Dominion University, USA in 2012. She is an associate professor of communication disorders and special education at Old Dominion University, USA.

Her research interests include multi-disciplinary approaches using biomedical technologies and instructional tools to improve outcomes for at-risk students and students with ADHD and autism spectrum disorder (ASD).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Silva, S., Dayarathna, S., Ariyarathne, G. et al. Computational Decision Support System for ADHD Identification. Int. J. Autom. Comput. 18, 233–255 (2021). https://doi.org/10.1007/s11633-020-1252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11633-020-1252-1

Keywords

Navigation