Skip to main content
Log in

Approaches to biosynthesis of salidroside and its key metabolic enzymes

  • Review
  • Published:
Forestry Studies in China

Abstract

As a main component of efficiency in Rhodiola plants, salidroside is a promising environmental acclamation medicine and possesses specific medical properties against symptoms of fatigue, old age, microwave radiation, viral infections and tumors. Salidroside plays important roles, especially in military, aerospace, sport and healthcare medicine and has, therefore, recently, drawn more and closer attention. This article probes mainly into the probable biosynthetic pathway of salidroside following a brief introduction of the exploitation and utilization values of Rhodiola plants and the current condition of its natural resources. We have come to the conclusion that tyrosol, the aglycon of salidroside, is biosynthesized through the well-characterized shikimic acid pathway. A molecule of glucose is transferred by the UDP-glucosyltransferase (or possibly by the β-D-glucosidase too) to the tyrosol to form salidroside. On the other hand, salidroside may be degraded into tyrosol and glucose by β-D-glucosidase. Progress in research of these two key-enzymes, involved in the metabolism of salidroside, is finally elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achnine L, Blancaflor E B, Rasmussen S, Dixon R A. 2004. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell, 16: 3,098–3,109

    Article  CAS  Google Scholar 

  • Bowles D, Lim E K, Poppenberger B, Vaistij F E. 2006. Glycosyltransferases of lipophilic small molecules. Ann. Rev. Plant Biol., 57: 567–597

    Article  CAS  Google Scholar 

  • Cheng Y H, Li P, Wang Q, Xian G Y. 2003. Experiment in cultivation and introduction of Rhodiola rosea L. J. Chin. Med. Mater., 26(11): 775–776 (in Chinese with an English abstract)

    Google Scholar 

  • David R G. 2005. Evolution of flavors and scents. Ann. Rev. Plant Biol., 56: 301–325

    Article  CAS  Google Scholar 

  • Dharmawardhana D P, Ellis B E, Carison J E. 1995. A β-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin. Plant Physiol., 107: 331–339

    Article  PubMed  CAS  Google Scholar 

  • Dixon R A, Paiva N L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell, 7: 1,085–1,097

    Article  CAS  Google Scholar 

  • Eimert K, Villand P, Kilian A. 1996. Cloning and characterization of several cDNAs for UDP-glucose pyrophosphorylase from barley (Hordeurn vulgare) tissues. Gene, 170: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Engelberth J. 2006. Secondary metabolites and plant defense. In: Taiz L, Zeiger E (eds.), Plant Physiology, 4th ed. Sunderland, Massachusetts: Inc. Publishers, 315–341

    Google Scholar 

  • Esen A, Blanchard D J. 2000. A specific β-glucosidase-aggregating factor is responsible for the β-glucosidase null phenotype in maize. Plant Physiol., 122: 563–572

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Hakkinën S T, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila A M, Söderlund H, Zabeau M, Inzé D, Oksman-Caldentey K M. 2003. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc. Nat. Acad. Sci. USA, 100: 8,595–8,600

    Article  CAS  Google Scholar 

  • Herrmann K M. 1995. The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol., 107: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Hong Z L, Zhang Z M, Olson J M, Verma D P S. 2001. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate. Plant Cell, 13: 769–779

    Article  PubMed  CAS  Google Scholar 

  • Jiang C J, Yu Y B. 2001. The research progress of PAL. J. Anhui Agric. Univ., 28(4): 425–430 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Kutchan T M. 2001. Ecological arsenal and developmental dispatcher: the paradigm of secondary metabolism. Plant Physiol., 125: 58–60

    Article  PubMed  CAS  Google Scholar 

  • Li W, Huang Q N. 2003. Research and application of Rhodiola plants. J. Capital Normal Univ., 24(1): 55–59 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Liang Z H, Zheng G Z. 1981. Secondary metabolism of high plants. Plant Physiol. Commun., 17(1): 14–21 (in Chinese with an English abstract)

    Google Scholar 

  • Ma L Q. 2005. Cloning and Functional Analysis of Salidroside Biosynthesis related Genes in Rhodiola sachalinensis. Ph. D Dissertation. Jilin: Jilin Univertsity, 1–110 (in Chinese)

    Google Scholar 

  • Mackenzie P I, Owens I S, Burchell B, Bock K W, Bairoch A, Belanger A, Belanger A, Fournel-Gigleux S, Green M, Hum D W, Iyanagi T, Lancet D, Louisot P, Magdalou J, Chowdhury J R, Ritter J K, Schachter H, Tephly T R, Tipton K F, Nebert D W. 1997. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 7: 255–269

    Article  PubMed  CAS  Google Scholar 

  • Ming H Q. 1986. Synthesis and pharmacological action of salidroside. Pharm. Commun., 21(6): 373 (in Chinese)

    Google Scholar 

  • Oba K, Conn E E, Canut H, Alain M B. 1981. Subcellular localization of 2-(β-D-glucosyloxy)-cinnamic acids and the related β-glucosidase in leaves of Melilotus alba Desr. Plant Physiol., 68: 1,359–1,363

    Article  CAS  Google Scholar 

  • Ritter H, Schulz G E. 2004. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell, 16: 3,426–3,436

    Article  CAS  Google Scholar 

  • Song Y Y, Han H W, Hao S Y. 2003. Progress in the research of Rhodiola. Acta Acad. Med. CPAPF, 13(1): 66–68 (in Chinese with an English abstract)

    Google Scholar 

  • Sudha G, Ravishankar G A. 2002. Involvement and interaction of various signaling compounds on the plant metabolic events during defense response, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell, Tiss. Org. Cult., 71: 181–212

    Article  CAS  Google Scholar 

  • Tao X Y, Lu Y H. 2006. The biotransformation of natural medicines with enzyme method. In: Lu Y H, Wang J W, Wei D Z (eds.), The Biotransformation of Natural Medicines. Beijing: Chemical Industry Press, 110–153 (in Chinese)

    Google Scholar 

  • Thorlby G, Fourrier N, Warren G. 2004. The sensitive to freezing gene, required for freezing tolerance in Arabidopsis thaliana, encodes a β-glucosidase. Plant Cell, 16: 2,192–2,203

    Article  CAS  Google Scholar 

  • Tikunov Y, Lommen A, Bovy A G, Verhoeven H A, Bino R J, Hall R D, Bovy A G. 2005. A novel approach for nontargeted data analysis for metabolomics: large-scale profiling of tomato fruit volatiles. Plant Physiol., 139: 1,125–1,137

    Article  CAS  Google Scholar 

  • Voll L M, Allaire E E, Fiene G, Weber A P M. 2004. The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism. Plant Physiol., 136: 3,058–3,069

    Article  CAS  Google Scholar 

  • Wang L, Shi L L, Liu Y J. 2007. Effects of different light treatments on growth and PAL activity of the suspension-cultured cells of Rhodiola fastigiata. Sci. Silv. Sin., 43(6): 49–53 (in Chinese with an English abstract)

    Google Scholar 

  • Wang L L. 2003. Study on pharmacology and clinic of Rhodiola rosea L. and compound recipe preparation. Acta Chin. Med. Pharm., 31(1): 51–53 (in Chinese with an English abstract)

    Google Scholar 

  • Wang M L, Zhang F, Liu D S. 2006. Preliminary study on synthesis of salidroside through glucosylation of D-glucose and tyrosol catalyzed by microorganism. Chin. J. Catal., 27(3): 233–236 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Winkel B S J. 2004. Metabolic channeling in plants. Ann. Rev. Plant Biol., 55:85–107

    Article  CAS  Google Scholar 

  • Wolucka A B, Goosenens A, Linzé D. 2005. Methyl jasmonate stimulates in the de novo biosynthesis of vitamin C in plant cell suspensions. J. Exp. Bot., 419(56): 2,527–2,538

    Google Scholar 

  • Wu X J, Liu D, Hu Z B. 2000. UDP-glucosyltransferasel. Plant Physiol. Commun., 36(3): 193–200 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Yin W B, Li W, Du G S, Huang Q N. 2004. Studies on tissue culture of Tibetan Rhodiola rosea. Acta Bot. Boreal-Occident. Sin., 4(8): 1,506–1,510 (in Chinese with an English abstract)

    Google Scholar 

  • Yu H L, Xu J H, Lin G Q. 2006. Application of glycosidase to glycoside synthesis. Chin. J. Org. Chem., 26(8): 1,052–1,058 (in Chinese with an English abstract)

    CAS  Google Scholar 

  • Zhao W, Jiang X. 2001. The bioactive research survey of Rhodiola plants. J. Health Toxicol., 15(1): 55–57 (in Chinese with an English abstract)

    Google Scholar 

  • Zouhar J, Vevodova J, Marek J, Damborsky J, Su X D, Brzobohaty B. 2001. Insights into the functional architecture of the catalytic center of a maize β-glucosidase Zm-p60.1. Plant Physiol., 127: 973–985

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yu-jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Ll., Wang, L., Zhang, Yx. et al. Approaches to biosynthesis of salidroside and its key metabolic enzymes. For. Stud. China 9, 295–299 (2007). https://doi.org/10.1007/s11632-007-0047-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-007-0047-6

Key words

Navigation