Skip to main content
Log in

Petrogenesis of the Neoarchean zincian chromite within ultramafic xenoliths, Bastar Craton, India

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

The present study reports and discusses the genesis of zincian chromite in the ultramafic xenoliths from the Dongripali area, Bastar craton, Central India. The zincian chromite is in the ultramafic xenoliths of Bengpal supracrustal rock hosted by Neoarchaean Bundeli gneisses. Compositionally zincian chromite shows a range of Cr2O3 (39.69 to 51.66 wt%), Al2O3 (05.30 wt% to 08.71 wt%), FeO (21.74 wt% to 27.51 wt%), Fe2O3 (10.19 wt% to 19.36 wt%) with higher ZnO content ranging from 1.73 wt% to 4.08 wt%. Accordingly, their Cr# [Cr/(Cr + Al)] varies in a narrow range from 0.83 to 0.85. Its calculated melt composition supports metamorphic or post-magmatic nature rather than common occurrences such as inclusion in diamonds, meteorites, and association with any sulfide-rich mineralised belt. This reveals that the post-magmatic processes play a vital role in transforming chromite to zincian chromite. The empirical thermometric calculation from chromite, amphibole, and pyroxene support their metamorphic origin and formed during low-P and high-T amphibolite grade facies of metamorphism (~ 700 °C). The Neoarchaean granitic magmatism has a significant role in generating and transferring the heat during contact metamorphism with hydration of ultramafic xenoliths and further alteration, i.e., serpentinisation. The olivine is a major repository for Mn, Zn, and Co in peridotite/ultramafic; these elements get mobilised during the metamorphism and serpentinisation. This is a possible reason for the mobilisation of zinc and incorporation in the chromite within altered ultramafic. As a result, chromite-rich ultramafic xenolith subjected to metamorphic process gets enrichment of Zn and Fe due to elemental exchange. It converts common chromite into zincian chromite, as reported in altered ultramafics elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abzalov M (1998) Chrome-spinels in gabbro-wehrlite intrusions of the pechenga area, kola peninsula, russia: emphasis on alteration features. Lithos 43(3):109–134

    Article  Google Scholar 

  • Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag 56(383):173–184

    Article  Google Scholar 

  • Arai S, Ishimaru S (2011) Zincian chromite inclusions in diamonds: possibility of deep recycling origin. J Mineral Petrol Sci 106(2):85–90

    Article  Google Scholar 

  • Arai S, Yurimoto H (1994) Podiform chromitites of the tari-misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Econ Geol 89(6):1279–1288

    Article  Google Scholar 

  • Armstrong JP, Barnett RL (2003) The association of Zn-Chromite with diamondiferous lamprophyres and diamonds: Unique compositions as a guide to the diamond potential of non-traditional diamond host rocks. vol 8

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42(12):2279–2302

    Article  Google Scholar 

  • Baswani SR, Mishra BP, Mahapatro SN, Meshram T, Pati P, Md. Shareef, Korakoppa M, Mishra M, Md. Atif Raza, Roy S, Randive K, Malviya VP, Dora ML (2022) Petrochemical evaluation of gahnite from volcanogenic massive sulfide deposits in Betul belt, Central India: insight from petrography and in-situ trace element geochemistry.Geol J 1–22

  • Bjerg PL, Christensen TH (1993) A field experiment on cation exchange-affected multicomponent solute transport in a sandy aquifer. J Contam Hydrol 12(4):269–290

    Article  Google Scholar 

  • Bunch TE, Keil K, Olsen E (1970) Mineralogy and petrology of silicate inclusions in iron meteorites. Contrib Miner Petrol 25(4):297–340

    Article  Google Scholar 

  • Challis GA, Grapes RH, Palmer KJ (1995) Chromian muscovite, uvarovite, and zincian chromite; products of regional metasomatism in Northwest Nelson, New Zealand. Can Mineral 33:1263–1284

    Google Scholar 

  • Chikami J, Miyamoto M, Takeda H (1999) The variation of Zn content in spinel group minerals and daubreelites of primitive achondrites. Antarct Meteor Res 12:139

    Google Scholar 

  • Das AK, Khaoash S, Mishra P, Mohapatra BK, Mohanty J (2021) Chromite-bearing quartzite in the southern fringe of Singhbhum craton around Ghutrigaon Eastern India: Petrogenetic Implication. Geol J 56(7):3472–3496

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas. Contrib Miner Petrol 86(1):54–76

    Article  Google Scholar 

  • Dill HG (2010) The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Sci Rev 100:1–420

    Article  Google Scholar 

  • Dill HG, Balaban S-I, Buzatu A, Bornemann A, Techmer A (2021) The Quaternary volcanogenic landscape and volcaniclastic sediments of the Netherlands Antilles - markers for an in-active volcanic arc. Int J Earth Sci 111:149–172

    Article  Google Scholar 

  • Dora ML, Upadhyay D, Malviya VP, Meshram T, Baswani SR, Randive K, Meshram R, Suresh G, Naik R, Ranjan S (2021) Neoarchaean and Proterozoic crustal growth and reworking in the Western Bastar Craton, Central India: constraints from zircon, monazite geochronology and whole-rock geochemistry. Precambrian Res 362. https://doi.org/10.1016/j.precamres.2021.106284

  • Downes H (2004) Ultramafic Xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for Multiple Metasomatic Events in the Lithospheric Mantle beneath the Wyoming Craton. J Petrol 45(8):1631–1662

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Depos 46:319–335

    Article  Google Scholar 

  • Evans DM (2015) Metamorphic modifications of the muremera mafic-ultramafic intrusions, eastern burundi, and their effect on chromite compositions. J Afr Earth Sc 101:19–34

    Article  Google Scholar 

  • Evans DM (2017) Chromite compositions in nickel sulphide mineralized intrusions of the kabanga-musongati-kapalagulu alignment, east africa: petrologic and exploration significance. Ore Geol Rev 90:307–321

    Article  Google Scholar 

  • Evans BW, Ronald Frost B (1975) Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochim Cosmochim Acta 39(6–7):959–972

    Article  Google Scholar 

  • Fanlo I, Gervilla F, Colás V, Subías I (2015) Zn-, Mn- and Co-rich chromian spinels from the Bou-Azzer Mining District (Morocco): constraints on their relationship with the mineralizing process. Ore Geol Rev 71:82–98

    Article  Google Scholar 

  • French JE (2008) U–Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the South Indian Shield: Implications for Paleocontinental Reconstructions and Identifying Ancient Mantle Plume Events. PhD Thesis. University of Alberta. University of Alberta

  • Gaetani GA, Grove TL (1997) Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: constraints on core formation in the Earth and Mars. Geochim Cosmochim Acta 61(9):1829–1846

    Article  Google Scholar 

  • Gahlan HA, Arai S (2007) Genesis of peculiarly Zoned Co, Zn and Mn-rich chromian Spinel in serpentinite of Bou-Azzer Ophiolite, Anti-Atlas, Morocco. J Mineral Petrol Sci 102(2):69–85

    Article  Google Scholar 

  • Gahlan HA, Arai S, Ahmed AH, Ishida Y, Abdel-Aziz YM, Rahimi A (2006) Origin of magnetite veins in serpentinite from the late Proterozoic Bou-Azzer ophiolite, anti-atlas, Morocco: an implication for mobility of iron during serpentinization. J Afr Earth Sc 46(4):318–330

    Article  Google Scholar 

  • Ghosh B, Thakur A (2011) Petrogenesis of Zincian spinel from mamandur base metal Sulphide Prospect, Tamil Nadu. J Geol Soc India 78:365–369

    Article  Google Scholar 

  • Ghosh JG (2004) 3.56Ga Tonalite in the central part of the bastar craton, India: Oldest Indian date. J Asian Earth Sci 23(3):359–64

  • Giret A, Bonin B, Leger J-M (1980) Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-composition. Can Mineral 18(4):481–495

    Google Scholar 

  • González-Jiménez JM, Villaseca C, Griffin WL, Belousova E, Konc Z, Ancochea E, O’Reilly SY, Pearson NJ, Garrido CJ, Gervilla F (2013) The architecture of the European-mediterranean lithosphere: a synthesis of the Re-Os evidence. Geology 41(5):547–550

    Article  Google Scholar 

  • Groves DI, Barrett FM, Brotherton RH (1983) Exploration significance of chrome-spinels in mineralized ultramafic rocks and nickel-copper ores. Geol Soc s Afr Special Publication 7:21–30

    Google Scholar 

  • Hill R, Roeder P (1974) The crystallisation of spinel from basaltic liquid as a function of Oxygen Fugacity. J Geol 82(6):709–729

    Article  Google Scholar 

  • Hoog De, Jan CM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270(1–4):196–215

    Article  Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator: Part 1 Theory. Can J Earth Sci 2(6):648–672

    Article  Google Scholar 

  • Irvine TN (1967) Chromian Spinel as a Petrogenetic Indicator: Part 2. Petrologic Applications. Can J Earth Sci 4(1):71–103

  • Jayananda M, Moyen J-F, Martin H, Peucat J-J, Auvray B, Mahabaleswar B (2000) Late Archaean (2550–2520 Ma) Juvenile Magmatism in the Eastern Dharwar Craton, Southern India: Constraints from Geochronology, Nd–Sr Isotopes and Whole Rock Geochemistry. Precambr Res 99(3–4):225–254

    Article  Google Scholar 

  • Jayananda M, Banerjee M, Pant NC, Dasgupta S, Kano T, Mahesha N, Mahabaleswar B (2012) 2.62 Ga high-temperature metamorphism in the central part of the Eastern Dharwar Craton: Implications for Late Archaean tectonothermal history. Geol J 47(2–3):213–36

  • Johan Z, Ohnenstetter D (2010) Zincochromite from the Guaniamo River Diamondiferous Placers, Venezuela: Evidence of Its Metasomatic Origin. Can Mineral 48(2):361–374

    Article  Google Scholar 

  • Kamenetsky VS (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated Olivine, Cr-Spinel and melt inclusions from primitive rocks. J Petrol 42(4):655–671

    Article  Google Scholar 

  • Lagos M, Ballhaus C, Münker C, Wohlgemuth-Ueberwasser C, Berndt J, Kuzmin DV (2008) The Earth’s missing lead may not be in the core. Nature 456(7218):89–92

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names. Mineral Mag 61(405):295–310

    Article  Google Scholar 

  • Leblanc M, Nicolas A (1992) Ophiolitic Chromitites. Int Geol Rev 34(7):653–686

    Article  Google Scholar 

  • Lewis JL, Day SM, Magistrale H, Eakins J, Vernon F (2000) Regional crustal thickness variations of the Peninsular Ranges. Southern Calif Geol 28(4):303

    Google Scholar 

  • Liipo J, Vuollo J, Nykänen V, Piirainen T, Pekkarinen L, Tuokko I (1995) Chromites from the early proterozoic outokumpu-jormua ophiolite belt: a comparison with Chromites from Mesozoic ophiolites. Lithos 36(1):15–27

    Article  Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Miner 68(5–6):477–493

    Google Scholar 

  • Mahabaleswar B, Peucat JJ (1988) 2.9 b.y. Rb-Sr age of the granulite facies rocks of Satnur-Halagur and Sivasamudram Areas, Karnataka, South India. Geol Soc India 32(6):461–67

  • Manu Prasanth MP, Hari KR, Chalapathi Rao NV, Hou G, Pandit D (2018) An Island-Arc tectonic setting for the Neoarchean Sonakhan greenstone belt, Bastar craton, central India: insights from the chromite mineral chemistry and geochemistry of the siliceous high-Mg Basalts (SHMB). Geol J 53(4):1526–1542

    Article  Google Scholar 

  • Matsumoto I, Arai S, Miura M (2017) Chromian spinels and olivines in a contact-metamorphosed peridotitesediment system from Nagasawa, SW Japan: Implications for mobility of elements in a hydrothermal condition system. Ore Geol Rev 91:682–694

    Article  Google Scholar 

  • Maurel C, Maurel Etude P (1982) Expérimentale de La Distribution de l’aluminium Entre Bain Silicaté Basique et Spinelle Chromifère. Implications Pétrogénétiques: Teneur En Chrome Des Spinelles. Bulletin Minéralogie 105:197–202

    Article  Google Scholar 

  • Meert, Joseph G., Manoj K. Pandit, Vimal R. Pradhan, Jonathan Banks, Robert Sirianni, Misty Stroud, Brittany Newstead, and Jennifer Gifford (2010) Precambrian Crustal Evolution of Peninsular India: A 3.0 Billion Year Odyssey. J Asian Earth Sci 39 (6): 483–515.

  • Meshrama T, Dora ML, Baswani SR, Upadhyay D, Meshrama R, Randive K, Ranjan S, Nanda JK (2021) Petrogenesis and U\\Pb geochronology of charnockites flanking the Pranhita Godavari rift in peninsular India-link between the Bastar and Eastern Dharwar Cratons. Gondwana Res 92: 113–132

  • Melcher F, Grum W, Thalhammer TV, Thalhammer OAR (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Miner Deposita 34(3):250–272

    Article  Google Scholar 

  • Merlet C (1994) An accurate computer correction program for quantitative electron probe microanalysis. Mikrochim Acta 114–115(1):363–376

    Article  Google Scholar 

  • Merlet, Claude (1992) Quantitative electron probe microanalysis: New accurate Φ (Ρz) description. In Electron Microbeam Analysis. Mikrochimica Acta. Vienna: Springer Vienna 12:107–15

  • Meshram T (2020) Mineralogical variation in platinum group element within altered chromitite of the kondapalli layered igneous complex (Southern India): implication on magmatic evolution and its petrogenetic significance. Ore Geol Rev 120:103398

    Article  Google Scholar 

  • Meshram T, Nannaware S, Mahapatro SN, Dora ML, Baswani S, Randive K (2022) Chromite composition and platinum-group element distribution in the proterozoic chimalpahad anorthosite complex, south India: implications for magmatic processes and discrimination of tectonic setting. Lithosphere: 1–24

  • Mohanty S (2015) Precambrian continent assembly and dispersal events of south Indian and east Antarctic shields. Int Geol Rev 57(16):1992–2027

    Article  Google Scholar 

  • Morimoto N (1989) Nomenclature of pyroxenes. Mineral J 14(5):198–221

    Article  Google Scholar 

  • O’Reilly SY, Chen D, Griffin WL, Ryan CG (1997) Minor elements in olivine from spinel Lherzolite xenoliths: implications for thermobarometry. Mineral Mag 61(405):257–269

    Article  Google Scholar 

  • Page P, Barnes S-J (2009) Using trace elements in Chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Quebec. Canada Economic Geology 104(7):997–1018

    Article  Google Scholar 

  • Paktunc AD, Cabri LJ (1995) A proton- and electron-microprobe study of gallium, nickel and zinc distribution in chromian spinel. Lithos 35(3–4):261–282

    Article  Google Scholar 

  • Paraskevopoulos GM, Economou M (1981) Zoned Mn-rich chromite from podiform type chromite ore in serpentinites of northern greece. Am Miner 66(9–10):1013–1019

    Google Scholar 

  • Peucat JJ, Mahabaleswar B, Jayananda M (1993) Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian Transition Zone (Krishnagiri Area); Comparison with older peninsular gneisses from the Gorur, Hassan Area. J Metamorph Geol 11(6):879–888

    Article  Google Scholar 

  • Peucat JJ, Bouhallier H, Fanning CM, Jayananda M (1995) Age of the holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, South India). J Geol 103(6):701–710

    Article  Google Scholar 

  • Pober E, Faupl P (1988) The chemistry of detrital chrome spinels and its implications for the geodynamic evolution of the Eastern Alps. Geol Rundsch 77:641–670

    Article  Google Scholar 

  • Purvis AC, Nesbitt RW, Hallberg JA (1972) The Geology of part of the carr boyd rocks complex and its associated Nickel mineralization, Western Australia. Econ Geol 67(8):1093–1113

    Article  Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar Craton, India. J Geol Soc 166(2):193–196

    Article  Google Scholar 

  • Rajesham T, Bhaskar Rao Y, Murti K (1993) The karimnagar granulite terrane-a new sapphirine bearing granulite province, South India. Geol Soc India 41(1):51–59

    Google Scholar 

  • Righter K (2003) Metal-silicate partitioning of siderophile elements and core formation in the early Earth. Annu Rev Earth Planet Sci 31(1):135–174

    Article  Google Scholar 

  • Roeder PL (1994) Chromite, from the fiery rain of chondrules to the Kilauea Iki Lava Lake. Can Mineral 32(4):729–746

    Google Scholar 

  • Sack RO, Ghiorso MS (1991) Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Am Miner 76(5–6):827–847

    Google Scholar 

  • Santosh M, Yokoyama K, Acharyya SK (2004) Geochronology and tectonic evolution of karimnagar and bhopalpatnam granulite belts Central India. Gondwana Res 7(2):501–518

    Article  Google Scholar 

  • Santosh M, Tsunogae T, Yang C-X, Yue-Sheng Han KR, Hari MPM, Prasanth SU (2020) The bastar craton, central India: a window to archean – paleoproterozoic crustal evolution. Gondwana Res 79:157–184

    Article  Google Scholar 

  • Sarkar G, Corfu F, Paul DK, McNaughton NJ, Gupta SN, Bishui PK (1993) Early Archean Crust in Bastar Craton, Central India—a geochemical and isotopic study. Precambr Res 62(1–2):127–137

    Article  Google Scholar 

  • Saumur BM, Hattori K (2013) Zoned Cr-spinel and ferritchromite alteration in forearc mantle serpentinites of the Rio San Juan Complex Dominican Republic. Mineral Magaz 77(1):117–136

    Article  Google Scholar 

  • Singh RP, Dubey CS, Singh SK, Shukla DP, Mishra BK, Tajbakhsh M, Ningthoujam PS, Sharma M, Singh N (2013) A new slope mass rating in mountainous Terrain, Jammu and Kashmir Himalayas: application of geophysical technique in slope stability studies. Landslides 10(3):255–265

    Article  Google Scholar 

  • Stein HJ, Hannah JL, Zimmerman A, Markey RJ, Sarkar SC, Pal AB (2004) A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly. Precambrian Res 134(3–4):189–226

    Article  Google Scholar 

  • Suita F, De MT, Strieder AJ (1996) Cr-Spinels from Brazilian Mafic-ultramafic complexes: metamorphic modifications. Int Geol Rev 38(3):245–267

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005) Subducting oceanic crust: the source of deep diamonds. Geology 33(7):565

    Article  Google Scholar 

  • Tesalina SG, Nimis P, Augé T, Zaykov VV (2003) Origin of chromite in mafic–ultramafic-hosted hydrothermal massive sulfides from the main Uralian Fault, South Urals. Russia Lithos 70(1–2):39–59

    Article  Google Scholar 

  • Thayer TP, Charles Milton JD, Jr HR (1964) Zincian Chromite from Outokumpu, Finland1. Am Mineral 49(9–10): 1178–83.

  • Weiser TW, Hirdes W (1997) Zinc-rich chromite from paleoproterozoic conglomerates at Tarkwa gold mine Ghana. Can Mineral 35(3):587–595

    Google Scholar 

  • Wiedenbeck, M., J.N. Goswami, Roy A.B. (1996) Stabilisation of the Aravalli Craton of Northwestern India at 2.5 Ga: An Ion Microprobe Zircon Study. Chemical Geology 129(3–4):325–40.

  • Wylie AG, Candela PA, Burke TM (1987) Compositional zoning in unusual Zn-Rich chromite from the sykesville district of maryland and its bearing on the origin of ‘Ferritchromit.’ Am Miner 72(3–4):413–422

    Google Scholar 

  • Yang J-S, Dobrzhinetskaya L, Bai W-J, Fang Q-S, Robinson PT, Zhang J, Green HW (2007) Diamond- and coesite-bearing chromitites from the luobusa ophiolite. Tibet Geol 35(10):875

    Article  Google Scholar 

Download references

Acknowledgements

The petrographic studies of zincian chromite rich ultramafic were carried out using LEICA DM RX at the Regional Petrology Laboratory, Geological Survey of India, Central Region, Nagpur, India. The silicate and oxide phases analyses were performed using a CAMECA SX-100 electron microprobe analyzer at the National Centre of Excellence in Geoscience Research (NCEGR), Geological Survey of India, Bangalore. The authors would like to express their sincere thanks to officials of the SEM, Palaeontology Laboratory, Geological Survey of India, Hyderabad and EPMA laboratory, NCEGR laboratory, Bangalore and the colleagues of GSI associated with exploration in the area. The authors also want to express their sincere thanks to Prof. Shoji Arai for discussion and critical comment to improve the manuscript in initial stage. The authors are thankful to Shri S. N. Mahapatro for his technical support. The authors acknowledge Geological Survey of India, Ministry of Mines, Government of India for funding the opportunity to work in this projects. Last but not the least the authors are thankful to Dr. Wubin Yang and anonymous reviewers for their critical review and constructive comments. The authors express sincere thanks to Dr. Binbin Wang, editor for providing opportunity and encouragement to submit the manuscript in the journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpita Karmakar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Meshram, T., Asif, M. et al. Petrogenesis of the Neoarchean zincian chromite within ultramafic xenoliths, Bastar Craton, India. Acta Geochim 42, 471–487 (2023). https://doi.org/10.1007/s11631-023-00596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00596-9

Keywords

Navigation